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Abstract

We document near-exponential growth in the demand for artificial intelligence (AI)-related
skills in India’s services sector from 2015, using a new dataset of online vacancies from its
largest jobs website. We evaluate the impact of demand for AI skills on establishment-level
non-AI postings, using a shift-share design that exploits variation in exposure to new
AI inventions. We find that AI adoption significantly reduces growth in non-AI posting
volumes and wage offers, particularly for highly skilled managerial and professional occu-
pations, non-routine work, and analytical and communication tasks.
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1 Introduction

Rapid advances in artificial intelligence (AI) have spurred an intense debate about its labor

market consequences.1 Online job adverts show that demand for AI-related skills grew almost

exponentially and concurrently in several countries around the world from 2015 to 2019 (Figure

1.1).2 Yet detailed empirical evidence on the extent of AI deployment and its distributional

impacts in developing countries remains scarce. The use cases and impacts of AI need not

be the same in developing countries as in advanced economies, and AI could have important

implications for development pathways. Consider two examples: machine translation (between

languages) and machine transcription (from handwriting to digital text). Improvements in

the former could reduce barriers to exporting services and increase employment in developing

countries (Brynjolfsson et al. 2019, Baldwin & Forslid 2020), while improvements in the latter

could automate an existing back-office process and decrease employment. Understanding the net

impact of such technologies on employment opportunities is therefore important for developing

countries considering whether to promote a services-led development model.

In this paper, we shed light on the labor market impacts of AI in India – the archetypical

pioneer of a services-led development model. We investigate these effects in the urban, white-

collar services sector using a new dataset of online job adverts posted from 2010 to 2019 on

India’s largest jobs platform, which hosts an estimated 60 percent of the country’s online

vacancies. Following a growing literature including Rock (2019) and Acemoglu et al. (2022), we

use the demand for AI-related skills, observed in the text of posted job descriptions, as a proxy

for AI deployment.

Given the scarcity of evidence on adoption of AI in developing countries, we first provide

four stylized facts on the demand for AI-related skills (hereafter ‘AI demand’) in India using the

job adverts data. First, we observe a rapid take-off in the rate of AI demand after 2015, rising

from 0.37 percent of all job postings that year to 1.03 percent in 2019, with take-up particularly

pronounced in the IT, finance and business process outsourcing (BPO) industries. This growth

coincides with the take-off in developed countries and reflects an increase in demand for specific

1To fix definitions, we consider artificial intelligence (AI) ‘the theory and development of computer systems
able to perform tasks normally requiring human intelligence, such as visual perception, speech recognition,
decision-making, and translation between languages’ (Oxford English Dictionary 2020). Machine learning, the
sub-field responsible for many of the recent commercial applications of AI, comprises ‘the statistical techniques
that enable computers and algorithms to learn, predict and perform tasks from large amounts of data without
being explicitly programmed’ (Acemoglu & Restrepo 2019). We henceforth use ‘AI’ as an umbrella term
encompassing machine learning. However, this paper focuses on advances in AI before recent progress in large
language models and generative AI.

2While online job postings in different countries and from different data providers may not be directly
comparable, we see a sharp and simultaneous increase in AI-related postings in all cases.
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Figure 1.1: AI share of online job postings, by country

Notes: This graph shows the share of all online vacancies – across all sectors – that specify particular AI skills, with these skills

defined as described in Section 2.2. Data for India is that used in this paper; data for all other countries is from Lightcast, which

does not cover India.

‘deep learning’ skills. Demand for AI skills is largely driven by technical roles such as software

development, but there is also substantial demand for AI skills in generalist and managerial roles.

Second, AI roles are heavily concentrated in the largest firms and a few key technology clusters

– particularly Bengaluru, Mumbai, Hyderabad, Pune, Chennai and Delhi – similar to patterns

observed in the USA by Babina et al. (2024) and McElheran et al. (2024). Third, adverts for

AI roles tend to feature more verbs associated with complex, creative, and data-driven tasks.

Fourth, AI roles tend to require substantially more education, particularly graduate degrees,

while also paying significantly higher wages. Even after controlling for a host of fixed effects,

posts demanding AI skills still pay a 13-17 percent salary premium, which is similar to the 11

percent estimate found in the USA (Alekseeva et al. 2020).

We then investigate the impact of this AI adoption on demand for non-AI labor at the

establishment level. In theory, the impact is ambiguous. Advances in machine learning have

been conceptualized as reducing the cost, or improving the quality, of the task of ‘prediction’,

which is prevalent in many occupations (Agrawal et al. 2018).3 While this suggests displacement

of labor, such improvements could also expand labor demand by reducing costs or increasing

3For example, a back office employee of a multinational bank takes the scrawled handwriting on a mortgage
application form as a visual input, then generates a typed name of the applicant as predicted output.
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the quality of production and hence raising productivity (Webb 2020, Acemoglu et al. 2022,

Acemoglu 2024). In addition, AI could create new tasks, spawn further innovation, or incentivize

changes in organisational structure (Brynjolfsson et al. 2017, Cockburn et al. 2018, Klinger

et al. 2018, Goldfarb et al. 2023, Agrawal et al. 2024). Finally, AI could reduce barriers to

services trade, potentially expanding the set of tasks that are outsourced (Brynjolfsson et al.

2019, Baldwin & Forslid 2020).

To measure the net impact empirically, we use a long difference and shift-share instrumental

variables strategy, examining how AI adoption relates to growth in AI and non-AI job postings

and wage offers between 2010-12 and 2017-19. AI adoption is measured as the year in which

an establishment (defined as a firm-city pair) first posts an AI vacancy. We focus on mature

‘incumbent’ establishments that posted on the platform at both baseline and endline, allowing us

to observe their labor demand before and after the mid-decade surge in AI adoption. To focus

on AI usage rather than AI production, we exclude AI-producing industries, as in Acemoglu

et al. (2022).4 We exploit plausibly exogenous variation in firms’ ex ante exposure to advances

in AI to account for unobservable differences between AI and non-AI adopters. Specifically, we

first measure the extent to which the workforce in 2010-12 within establishments performed

tasks later automatable by AI, using the occupation-level metric developed by Webb (2020) that

assesses overlap between job tasks and patented AI capabilities. We then create a shift-share

instrument for AI adoption by combining these occupational AI ‘shocks’ with establishment-level

occupation vacancy shares at baseline. This instrument assumes that, within cells of similar

establishments formed by our granular fixed effects, those more exposed to AI-automatable tasks

are more likely to adopt AI, independent of other characteristics. Our first stage results confirm

higher AI adoption in more exposed establishments. We present ex ante arguments (as described

in Borusyak, Hull & Jaravel 2021) and ex post robustness tests (following Goldsmith-Pinkham

et al. 2020) in support of our instrument’s validity.

Overall, we find a significant negative impact of AI adoption on establishment-level labor

demand. A one percentage point increase in the probability of an establishment adopting AI

between 2010-12 and 2017-19 – which corresponds to approximately one standard deviation

higher ex ante exposure – results in an 8.1 percentage point reduction in the growth of non-AI

vacancy postings. The effect on total vacancies (including AI vacancies) is similarly substantial,

with a 7.8 percentage point decrease. The small difference between these two numbers indicates

that the growth in vacancies constituted by new AI posts is far outweighed by the displacement

4In particular, we drop IT and education, which are responsible for the vast majority of AI patents (Klinger
et al. 2020).
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effect in the much larger set of non-AI vacancies. These effects are also substantial when

compared to the median growth in postings of 24.9 percent over the same period.

To better understand the mechanisms driving these effects and identify which types of

jobs and tasks are most impacted by AI adoption, we analyze the heterogeneous impacts

across occupations, skill requirements, and tasks. These negative impacts primarily reflect a

reduction in demand for skilled managerial and professional occupations, non-routine work,

and analytical and communication tasks. First, examining the impact on establishment-level

vacancy composition by occupation group, we find a substantial reduction in higher-skilled

professional and managerial occupations, notably engineering professionals and general and

corporate managers. Second, using the classification of Acemoglu & Autor (2011), we find that

AI demand lowers demand for occupations that are typically non-routine task intensive. This

contrasts with previous recent waves of technological change that primarily lowered demand

for routine tasks. Importantly, this negative impact on non-routine task-intensive occupations

persists within the affected managerial and professional occupation groupings. We find similar

negative impacts on ‘abstract’ task intensity, as defined in Autor & Dorn (2013), both within

and between occupation groups. Finally, we leverage the richness of our text data to generate a

more granular and flexible measure of task content following Michaels et al. (2018). We count

verbs in job descriptions and classify them according to meaning using Roget’s Thesaurus, and

find that AI adoption reduces demand for verbs related to ‘intellectual faculties’. In particular,

there is a reduction in the frequency of verbs related to: ‘precursory conditions’ (such as

investigate, scrutinize, research, explore, examine); ‘extension of thought’ (such as predict,

forecast, anticipate, memorize, recall); and those related to ‘means of communicating ideas’

(such as narrate or describe). Such verbs align closely with the capabilities of new machine

learning algorithms, suggesting that AI technologies are reducing the need for human labor in

tasks involving analysis, prediction, and complex communication.

How does this displacement affect wage offers for new hires? We estimate that a one

percentage point increase in the probability of an establishment adopting AI between 2010-12

and 2017-19 reduces the growth rate of median non-AI wage offers by 5.5 percentage points, and

that of all wage offers by 5.3 percentage points. This is driven almost entirely by a composition

effect across occupations: when controlling for occupation shares, we do not see statistically

significant reductions across the wage offer distribution. Our findings thus suggest that AI

adoption reduced the availability of relatively high-wage managerial and professional occupations

within incumbent Indian white-collar services firms.

Finally, we investigate wider effects of AI adoption by aggregating across establishments, first
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within firms and second within districts.5 At the firm level, we again find significant negative

impacts of AI adoption on labor demand and wage offers. However, when aggregating instead

to the district level, we do not detect a significant overall impact of AI adoption. A relatively

small share of establishments adopted AI within our sample period; thus, it is likely that the

impacts were not yet large enough to be observable at this broader geographic scale.

Taken together, our results suggest that the demand for AI-related skills has already had

important effects on Indian service-sector establishments and firms, altering the distribution

of labor demand and wage offers across occupations and tasks. Despite limited district-level

effects at present, the wider economic implications of AI adoption are likely to grow as usage of

the technology diffuses further throughout the economy.

Related literature: Our primary contribution is to the nascent literature on the impacts

of AI on developing countries. To date, this has been primarily theoretical due to the scarcity

of data on AI adoption in developing countries. Baldwin (2019) and Baldwin & Forslid (2020)

have conjectured that machine learning, along with online platforms and software robots, could

benefit developing countries by facilitating the offshoring of white-collar services. In contrast,

Korinek & Stiglitz (2021) take an alternative view that developing countries will be negatively

affected, because AI devalues their comparative advantage in lower-cost labor and natural

resources. To the best of our knowledge, we are the first to use data on AI deployment in a

developing country to provide causal evidence on such hypotheses.6 Our evidence provides

partial support for both perspectives. On one hand, we document rapid increases in labor

demand for AI skills in India, particularly in the IT and financial services sectors, consistent

with the upskilling of existing offshored white-collar services functions. On the other hand, we

find a significant negative impact of AI deployment on non-AI labor demand and wages within

establishments and firms, consistent with labor displacement. More broadly, our findings that

these negative impacts are concentrated in relatively highly skilled managerial and professional

occupations align with concerns about the potential for services-led growth to generate good

jobs in a world where advances in AI enable the automation of an increasing share of service

sector tasks.

We also contribute to the broader literatures on AI diffusion and its consequences. First, we

5Firms are national in our dataset, so this corresponds to collapsing respectively the cross-geography and
cross-firm dimensions of our data.

6Notably, Brynjolfsson et al. (2019) provide evidence on the causal impact of AI on US-Latin America trade
using evidence from AI deployment on eBay, a multinational e-commerce platform. Several other studies provide
descriptive evidence on AI exposure, as opposed to observed AI adoption, using data on the cross-sectional
distribution of occupations (e.g., Pizzinelli et al. 2023, Gmyrek et al. 2023). Alonso et al. (2022) consider the
impact of automation technologies, broadly defined, on developing countries, using data on industrial robots.
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offer new insights on the diffusion of AI skills in the important context of India. In contrast

to evidence on slow diffusion within countries (e.g., Bloom et al. 2024), as well as theories of

slow diffusion to low-income countries (e.g., Benhabib & Spiegel 2005), we find that growth in

the demand for AI skills within India has been remarkably similar to, and even faster than,

that documented in some advanced economies, highlighting the rapid global diffusion of AI

capabilities. At the same time, we also find a high degree of clustering, with our finding that

AI hiring is highly concentrated within a small number of firms and tech hubs aligning with

patterns of diffusion in the US documented by Babina et al. (2024) and McElheran et al. (2024).

Turning to the impacts of AI, we find both similarities and differences to findings in advanced

economies. Although India has a different labor market structure to high-income countries, our

findings of negative within-establishment effects of AI on labor demand echo those of Grennan &

Michaely (2020) and Acemoglu et al. (2022) in the US. Our findings that these negative effects

are driven by higher-skilled occupations and analytical tasks are also consistent with Grennan

& Michaely (2020) and Webb (2020), yet contrast with the results of Acemoglu et al. (2022)

that AI exposure predicts increased demand for skill families relating to engineering, analysis,

marketing, finance and IT in the US. Our findings thus highlight the potentially nuanced

impacts of AI across contexts, with occupation-level impacts differing in India despite similar

establishment-level displacement effects. Our evidence that AI negatively affects non-routine

task-intensive occupations also stands in contrast to findings for previous waves of technological

change, such as computerization, that lowered demand for routine task-intensive occupations

(for instance, Autor et al. 2003, Goos & Manning 2007, Goos et al. 2014).7

Finally, we add granularity to the existing literature on the labor demand impacts of AI by

leveraging the rich data available on our partner’s platform. Building on Michaels et al. (2018),

who study the historic occupational distribution in the US, we use the specific verbs in job

descriptions to show how AI disproportionately displaces particular tasks, such as forecasting

and prediction. Our dataset also includes detailed information on wage offers – in contrast to

commonly used platforms in advanced economies, where wage offer information is missing for

the majority of posts (Batra et al. 2023) – allowing us to investigate the implications of AI

adoption for wage offers. In doing so, we also contribute to the growing literature that uses

online vacancy postings to explore labor market effects (e.g. Deming & Kahn 2018, Adams et al.

2020, Javorcik et al. 2020, Babina et al. 2023, 2024).

The rest of this paper proceeds as follows. Section 2 introduces the data, and Section 3

7This finding that the pattern of impact of machine learning is very different to previous waves is also
consistent with emerging evidence on the impacts of generative AI (e.g., Brynjolfsson et al. (2023), Noy & Zhang
(2023)).
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presents detailed descriptives on AI demand in the Indian white-collar services sector. Section

4 lays out our empirical strategy, and Section 5 presents our main findings on the impact of

AI adoption in hiring on non-AI labor demand and wage offers. Section 6 provides several

robustness checks and extensions, including exploring effects beyond the establishment level.

Section 7 concludes. The online appendix provides further detail on the construction of our

dataset, as well as additional results and robustness checks.

2 Data

2.1 Vacancy data

Our primary dataset is a random sample of 80 percent of job vacancies posted on India’s largest

online job platform between 2010 and 2019.8 Firms primarily advertise on the platform and

conduct subsequent recruitment and hiring offline. The platform estimates a 60 percent market

share of Indian online job vacancies in 2020. We focus on the white-collar services sector,

for which the data is most representative of overall job vacancies, dropping posts from the

manufacturing and agriculture sectors. Our dataset includes approximately 15.5 million service

sector job postings, equating to an average of 1.5 million per year, skewed towards later years.

This compares to an estimated 19 million people formally employed in the service sector in

India in 2021, according to the Ministry of labor and Employment.9

Firms submitting job vacancies on the platform are required to use a standardized template.

Hence, all posts include information on the job title, industry, role category, location, skills

required, salary and experience ranges and educational requirements. The job postings also

feature an open text section for the job description, exclusively in English as they are within the

formal services sector. We manually map industries and occupations into the National Industrial

Classification (NIC) at the two-digit level and National Classification of Occupations (NCO) at

the four-digit level, covering 99 percent of all vacancies. We also harmonise city names and add

geolocations, separating out overseas job postings. Using the geolocations, we match cities to

districts using the 2011 census. We focus on full-time jobs, which make up 96 percent of the

sample, and drop the small number of part-time and non-permanent positions.

Our dataset has several advantages relative to administrative datasets. First, and most

importantly, we can directly observe demand for AI skills in the text of job descriptions. In

contrast, national surveys during the period (specifically, the National Sample Survey in 2011-12

8The company requested to remain undisclosed.
9https://static.pib.gov.in/WriteReadData/specificdocs/documents/2022/jan/doc20221104101.pdf

7



and the Periodic Labour Force Survey in 2017-18) only record broad occupational categories,

which are insufficient to identify the use of AI skills.10 Similarly, firm-level datasets such as

Prowess only include variables commonly reported in periodic financial statements, which are

insufficiently granular to identify specific AI-related investment. Second, our vacancy dataset

has broader coverage, with more than two million services vacancies in 2018, from 40,000 unique

firms, compared to 12,000 workers surveyed in the 2017-18 Periodic Labour Force Survey and

2,000 firms recorded in Prowess (see Online Appendix A.2 for details). Lastly, our data are at

a higher frequency than the representative sample surveys, which only took place in 2011-12

and 2017-18 and so can provide only limited insight into employment dynamics in the Indian

services sector around the rapid take-off in AI demand from 2015.11

However, the richness of the vacancy data comes with certain shortcomings, notably that

online vacancies are not representative of all vacancies and only proxy for firm hiring behaviour.

Broadly speaking, our vacancy data best represents urban, white-collar service sector jobs, with

a greater representation of the IT & BPO, Finance, Insurance and Real Estate, Professional and

Business Services industries relative to administrative datasets. We provide a detailed overview

of the coverage and representativeness of the data in Online Appendix A.2, where we benchmark

the vacancy data relative to nationally-representative labor surveys and firm-level data from

Prowess. Vacancies are disproportionately concentrated in urban centres, but at least one post

appears for nearly every district in India.12 Although the share of formal jobs is lower in India

than in advanced economies, we find a ratio of 0.08 of annual average job postings to total

formal employment. This is similar to the ratio of 0.09 for annual US job postings from Burning

Glass Technologies relative to total US employment from 2010-2018 (Acemoglu et al. 2022).

2.2 Measuring AI demand

Despite the prominence of AI in popular discussion, firm-level data on AI adoption remains

scarce (Raj & Seamans 2018). In the absence of more granular data, a growing body of work uses

technology-related human capital to proxy for technology adoption.13 Human capital is a key

input for deploying AI systems and the scarcity of skilled AI professionals is well recognized as

10For instance, the closest categories to a machine learning engineer in the National Occupational Classification
are the broad codes ‘2132 – Computer Programmers’ and ‘3122 – Computer Assistants’.

11Specifically, we receive daily data, which we aggregate to an annual frequency in our regressions.
12The full geographic distribution of posts is shown in Online Appendix Figure A.1.
13For example, Rock (2019) and Benzell et al. (2019) use LinkedIn profiles to construct firm-level measures

of engineering and IT talent, while Harrigan et al. (2020) use the firm-level employment share of ‘technology
workers’ in French matched worker-firm data as a measure of technology adoption. Trefler & Sun (2022) build a
measure of AI deployment for mobile apps.
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a primary obstacle to widespread adoption of AI, with top-tier scientists earning extremely high

salaries and frequently being bought out of academic positions. A global survey of around 2,000

companies by McKinsey Global Institute (2019) found that the primary method for sourcing

AI talent and capabilities was external hiring. Most companies build their AI capabilities in

house rather than buying or licensing capabilities from large technology companies. Even when

firms subcontract AI services, they typically require some in-house AI-related human capital

to oversee and manage the process. We therefore follow this emerging literature in using the

demand for AI skills as a proxy for the extent of AI adoption within firms, assuming the two

are positively correlated.

Online job vacancy data are well suited to the measurement of demand for very specific

technology-related human capital owing to the detailed text data on the skills demanded for

specific roles. To measure firm demand for AI skills, we classify job postings based on the text

in the job description or skills requirements. Our main classification is the ‘narrow’ measure

employed by Acemoglu et al. (2022), which categorises a post as an AI vacancy if it includes

any word from a list of specific AI terms.14 By using this narrow measure of AI skills, we reduce

measurement error, although our estimates of demand for AI skills are likely to be a lower bound

of the true level of adoption.

2.3 Verb categorisation

To shed light on the tasks that accompany AI-related skills, we follow Michaels et al. (2018) in

using verbs mentioned in the text of job adverts as a proxy for task demand. We use the same

list of 1,665 English verbs and the meaning of verbs from Roget’s Thesaurus, which classifies

words according to their underlying concepts and meanings. The Thesaurus is organized into 6

classes and 38 sections. The 6 classes are: Abstract Relations (ideas such as number, order and

time); Space (movement, shapes and sizes); Matter (the physical world and human perception of

it); Intellect (the human mind); Volition (the human will); and Emotion, Religion, and Morality.

14Specifically, a post is categorized as AI-related if any of the following terms appear in either the ‘job
description’ or ‘skills required’ fields: Machine Learning, Computer Vision, Machine Vision, Deep Learning,
Virtual Agents, Image Recognition, Natural Language Processing, Speech Recognition, Pattern Recognition,
Object Recognition, Neural Networks, AI ChatBot, Supervized Learning, Text Mining, Support Vector Machines,
Unsupervized Learning, Image Processing, Mahout, Recommender Systems, Support Vector Machines (SVM),
Random Forests, Latent Semantic Analysis, Sentiment Analysis / Opinion Mining, Latent Dirichlet Allocation,
Predictive Models, Kernel Methods, Keras, Gradient boosting, OpenCV, Xgboost, Libsvm, Word2Vec, Chatbot,
Machine Translation and Sentiment Classification.
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3 Descriptives

Given the dearth of evidence on the adoption of AI in developing countries, this section presents

four descriptive findings from our job postings data, documenting the trends in and composition

of posts listing AI skills in the white-collar services sector in India. Here, and throughout the

paper, we focus on non-remote, full-time and permanent jobs, which make up 96 percent of the

sample.

1. AI demand increased rapidly after 2015, with highest demand for technical

data and management roles.

We first observe that the demand for AI skills increased rapidly after 2015, rising from 0.37

percent of all job postings that year to 1.03 percent in 2019 (Figure 3.1). This growth is largely

driven by demand for general ‘machine learning’, with the sub-field ‘deep learning’ rising rapidly

from relative obscurity to being the second most common AI term from 2017 onwards. AI

demand grew steadily in the IT sector since 2011. However, after 2015, demand for AI-related

skills also grew rapidly in ‘AI-using’ sectors. For instance, the financial sector saw a ten-fold

growth in AI demand between 2016 and 2018, starting from a low base. The business process

outsourcing and call centre sector saw a small boom in AI demand in earlier years, corresponding

to a spike in demand for ‘speech recognition’. The growth in AI demand in India coincides with

the take-off in high-income countries, as shown in Figure 1.1.

The most common AI role title by far is ‘Software Developer’, followed by other technical

roles such as ‘Data Analyst’, ‘Technical Lead’ and ‘Technical Architect’ (Online Appendix Figure

A.8). AI skills are also required in technical management roles, with titles such as ‘Analytics

Manager’, ‘VP - Analytics and BI’, and ‘Project Manager-IT/Software’ also appearing in the

top 20 AI-related roles. Yet there is also a long tail of more generalist roles, including ‘Business

Analyst’, ‘Trainee’, ‘Program Manager’ and ‘Product Manager’. Indeed, more than 25 percent

of all AI vacancies are fragmented across other roles that each account for less than 1 per-

cent of the total, highlighting that demand for AI skills is spread widely across many occupations.
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Figure 3.1: Trends in AI demand

(a) Most demanded AI skills (b) AI share of posts, by industry

Notes: Panel (a) shows the share of all vacancies that specify particular AI skills, for the top five most demanded skills. Panel (b)

shows the share of vacancies that are AI vacancies, both for all industries together and within each of the top five industries by AI

share.

2. AI roles are highly concentrated in the largest firms and a few key technology

clusters, particularly Bengaluru.

AI roles are highly concentrated in the largest firms. We proxy for firm size by the number of

vacancies posted on the platform and compare the cumulative share of AI posts against the

corresponding share of all posts. We find that the largest 14 firms are responsible for 10 percent

of all vacancies, with each posting at least 50,000 vacancies. These account for 31 percent of

all AI posts (Online Appendix Figure A.5). While there are some smaller firms that post a

disproportionate number of AI posts, the largest AI-hiring firms are also the largest hirers in

general.

AI demand is also highly concentrated in large cities, particularly the major technology

clusters around Bengaluru, Mumbai, Hyderabad and Delhi. Bengaluru alone has more than 30

percent of all AI vacancies across India (Online Appendix Figure A.6). Shares of AI demand in

cities have been remarkably constant over the last decade, except for a prominent increase in AI

activity in Mumbai as AI demand took off in the financial sector (Online Appendix Figure A.7).
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Figure 3.2: Share of all AI posts by district, 2010-2019

Notes: The map shows the distribution of the share of all AI posts by particular districts, for the entire period 2010 to 2019. Labels

are shown for the top ten cities with the most AI posts. The majority of districts have few AI posts, since hiring is clustered in the

largest cities.

3. AI job postings include more complex, creative, and data-driven tasks.

The text of AI job postings contains more verbs associated with complex, creative, and data-

driven tasks. Extracting verbs from the job descriptions in AI and non-AI ads, we calculate the

share of each verb relative to all verbs, and compare these shares in AI job posts to non-AI job

posts. Table 3.1 shows the verbs with the most significant frequency difference between AI and

non-AI posts. Compared to non-AI posts, AI posts contain a higher share of complex tasks (e.g.

develop and advance), creative tasks (e.g design and build), and data-driven tasks (e.g compute

and predict).
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Table 3.1: Verbs in AI posts

Less common More common

1 Call Develop

2 Manage Build

3 Shift Program

4 Plan Design

5 Account Work

6 Tar Predict

7 Look Deliver

8 Recruit Use

9 Apply Advance

10 Report Compute

Notes: We count verbs in job descriptions of AI and non-AI job posts and form verb shares. This table shows the verbs with the

largest difference in shares between AI and non-AI job posts. Positive (negative) differences imply that the corresponding verbs are

more (less) likely to be included in AI posts.

4. AI roles require more education and offer substantially higher wages than

other white-collar services jobs.

AI roles list more advanced educational requirements and offer substantially higher wages than

other white-collar services jobs advertized on the platform (Figure 3.3). AI vacancies are almost

twice as likely as non-AI vacancies to require a master’s degree, and more than seven times more

likely to require a doctorate. They post a CPI-deflated median salary of |162,000 (approximately

US$3,333, without adjusting for PPP), twice the median non-AI salary of |84,000 (US$1,666).

This ‘AI wage premium’ remains high even when controlling for experience, education and firm

fixed effects (20 percent), and occupation or role fixed effects (13-17 percent).15

15See Online Appendix Table A.4.
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Figure 3.3: Hiring profile of AI vs. non-AI vacancies

(a) Years of experience (b) Education level (c) Salary (Rupees)

Notes: These graphs compare the distribution of posts, for AI and non-AI vacancies, across experience, education and salary. This

information is reported directly in the online jobs platform. Salaries are CPI deflated to 2010 levels. For experience and salary, the

vacancy posts record a minimum and maximum value, so we take the midpoint of the specified range. AI posts are classified based

on keywords, as described in Section 2.2.

In the rest of the paper, we build on these descriptive findings to assess the causal impact of

AI adoption on labor demand. Our long-difference specification exploits the rapid increase in AI

demand in the middle of our sample period (descriptive finding #1). Noting the concentration

within particular cities and firms (descriptive finding #2), we do so using an establishment-level

approach that controls for both city and firm-size fixed effects. Finally, given the specialization

of AI roles in particular tasks (descriptive finding #3), and the ‘AI wage premium’ (descriptive

finding #4), we examine the implications of AI adoption for the establishment-level composition

of occupations and tasks and the wage offer distribution.

4 Empirical Strategy

4.1 Main specification

Our main specification assesses the impact of increased AI demand on changes in the demand

for non-AI roles between our baseline period (2010 to 2012) and our endline period (2017 to
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2019), spanning the take-off in AI demand from 2015.16 We take a long-difference approach

common in the automation and labor markets literature to focus on structural changes rather

than short-term fluctuations in labor demand. Our primary unit of analysis is ‘establishments’,

defined as firm-city pairs, as many firms report postings in several different cities. To focus on

the effects of AI usage, rather than AI production, we exclude AI-producing industries as in

Acemoglu et al. (2022).17 Our main estimation sample contains almost 25,000 establishments

posting approximately two million vacancies on the platform within our baseline and endline

periods.18 By definition, these establishments are part of relatively large, incumbent firms, as

they existed already in 2010-12 and were still operational in 2017-19. We focus on this sub-set

of all establishments to allow us to assess the medium-run establishment-level impacts of AI,

recognizing that other channels (such as new AI-focused startups beginning in the mid-2010s)

could also impact aggregate labor market outcomes.

Our main specification is

∆yfr,t−t0 = β · AdoptsAIfr,t−t0 + αr + αi + αf10 + ϵfr,t−t0 , (4.1)

where: ∆yfr,t−t0 is the change in the natural logarithm of outcome Yfrt between 2010-2012 and

2017-19; AdoptsAIfr,t−t0 is a dummy taking value one for establishments that do not post an AI

role in the baseline but do post an AI role in the endline; αi and αr are two-digit industry and

city fixed effects; and αf10 is a firm size decile fixed effect, where firm size deciles are calculated

over firm posting volumes in the baseline period.19 We cluster standard errors at the firm level

to account for common shocks across establishments within the same parent firm.

The primary identification concern is that AI adoption is systematically related to unobserved

establishment-level factors that also increase non-AI labor demand, such as manager quality.20

To address such potential endogeneity, we instrument AI adoption with ‘AI exposure’ to isolate

changes resulting from supply-side technical advances in the capabilities of AI. We first take the

occupation-level AI exposure measure developed by Webb (2020), which measures the extent to

16We pool within these periods in order to improve precision and maximise the probability that a firm
advertises on the job postings platform during both time periods.

17Specifically, we drop education, IT, internet and e-commerce, telecom and internet service providers, which
make up 34.8 percent of the sample.

18Appendix A.3 provides summary statistics for this sample.
19The variables ∆yfr,t−t0 approximate the growth in establishment outcomes between 2010-12 and 2017-19.

Mathematically, for growth rate g defined by Yt = (1 + g)Yt0 , and using the approximation that ln(1 + g) ≈ g
for small g, we have g = lnYt − lnYt0 = ∆yt−t0 .

20For example, more innovative managers may be more likely to hire AI workers, but are also more productive
and grow the business more quickly, hence also increasing non-AI labor demand. Appendix Table B.35 shows
OLS results that support this suspected upward bias.
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which workers’ tasks can be performed by AI technologies using the degree of overlap between

the text of AI patents and the text of O*NET job-task descriptions.21 Occupations with a

higher share of tasks that are capable of automation by AI are assigned a higher exposure

value. We map the Webb (2020) exposure measure to the Indian National Classification of

Occupations (NCO) 2004 at the four-digit level using publicly-available crosswalks. To capture

establishment-wise exposure to AI-based automation, we then aggregate this measure to the

establishment level by weighting across baseline establishment occupation shares.22 Specifically,

we calculate:

Exposurefr,t0 =
∑
o

PostingSharet0fro ·WebbExposureo (4.2)

where o represents occupations. We then standardize Exposurefr,t0 to have a mean of zero and

a standard-deviation of one, and estimate the first stage:

AdoptsAIfr,t−t0 = γ · Exposurefr,t0 + αr + αi + αf10 + efr,t−t0 , (4.3)

This is a linear probability model, such that the first stage coefficient γ estimates the increase in

the probability of an establishment adopting AI between 2010-12 and 2017-19 that is associated

with a one standard deviation rise in establishment exposure. When instrumenting equation 4.1

with equation 4.3, the coefficient β estimates the percentage point increase in the growth rate

of outcome Yfrt that is associated with a 1 percent rise in the predicted probability of a firm

adopting AI between 2010-12 and 2017-19.

We discuss several variations of this main specification in Section 6, including alternatives

to a linear probability model in the first stage (Online Appendix Tables B.32 and B.33) and

alternatives to using an AI adoption dummy (Online Appendix Tables B.26 to B.29).

4.2 Identification assumptions

Our case for a causal interpretation stems from the baseline posting ‘shares’ by occupation in

2010-12 (PostingSharet0fro) being exogenous with respect to the outcome variables (primarily

changes in establishment-level postings between 2010-12 and 2017-19) after conditioning on

21These task descriptions are based on US occupations. While Indian occupations in general may have
different task compositions, the white-collar service sector – which contains many multinational firms – is likely
to be more similar. To the extent that this is not the case, it would also merely count against the strength of
our first stage.

22Online Appendix Figure A.9 shows the distribution of exposure scores across occupation-wise wage offer
percentiles. AI exposure rises with wage offers up to a peak around the 80th percentile, before falling thereafter.
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Figure 4.1: Impact of AI exposure on the AI share of establishments’ posts

(a) Long differenced AI share vs. exposure (b) Annual AI share by exposure quintile

Notes: These graphs show the relationship between AI exposure and the AI share of establishments’ posts. The binned scatter plot

in (a) summarizes the relationship between baseline AI exposure and establishments’ change in AI vacancy share between 2010-12

and 2017-19, after partialling out region, industry and firm-decile fixed effects following Cattaneo et al. (2023). Panel (b) plots the

time variation in this relationship, using an inverse hyperbolic sine scale for the y-axis.

our fixed effects. Our Bartik instrument combines these shares with the ‘shocks’ of occupation-

varying measures of exposure to AI patents, WebbExposureo.

Instrument relevance requires that the instrument must correlate with the endogenous

variable, ∆Adoptionfr,t−t0 , conditional on region, industry, and firm size decile fixed effects,

αr, αi, αf10. We find that AI exposure does indeed predict AI demand (Figure 4.1 Panel (a)). A

one standard deviation higher establishment AI exposure score is associated with a significant

1.06 percent increase (p<0.01) in the probability of an establishment adopting AI between

2010-12 and 2017-19, after controlling for region, industry and firm size decile fixed effects.23

Panel (b) of Figure 4.1 shows the relationship between AI exposure and AI adoption over time

and confirms that the differential appeared at the same time that machine learning techniques

became widely used. For instance, the AI share of vacancies posted by the most exposed quintile

of establishments was relatively similar to other exposure quintiles until 2016, before rapidly

diverging to reach almost 8 percent in 2018.

Instrument validity requires that, conditional on region, industry and firm size decile fixed

effects, our AI exposure instrument is exogenous with respect to the error term. We require:

E
[
Exposurefr,t0 · ϵfr,t−t0|αr, αi, αf10

]
= 0. (4.4)

This assumption has a more intuitive interpretation. Goldsmith-Pinkham et al. (2020) highlight

23Full results are provided in Online Appendix Table B.4.
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that this exogenous shares approach is equivalent to combining many difference-in-differences

designs. Conditional on fixed effects, we need to argue that each of these is valid. For each

occupation o, we require:

Cov
[
ϵfr,t−t0 , PostingSharet0fro|αr, αi, αf10

]
= 0. (4.5)

As our outcome is measured in first differences, this is a parallel trends assumption. Thus,

we claim that establishments with different baseline posting shares would have had parallel

trends in labor demand and wage offers in the absence of the occupation-level AI shock. While

this exogeneity assumption cannot be directly tested, we suggest both ex-ante argument and ex

post robustness tests.

First, we argue that, conditional on fixed effects, baseline occupation shares are exogenous to

future trends in labor demand and wage offers. ϵfr,t−t0 is a residual trend in labor demand and

wage offers between the baseline (2010-12) and endline (2017-19) periods. Baseline occupation

shares, PostingSharet0fro, are predetermined by definition. Thus, for these shares to be influenced

by ϵfr,t−t0 , establishments would have had to predict the AI boom and adjust their baseline

occupation shares preemptively. We contend that this is highly unlikely, since the AI boom was

sudden and unexpected. The boom was driven by significant advances in computer science, such

as the AlexNet breakthrough in late 2012, which were rapidly commercialized and disseminated,

for instance through the open-source release of TensorFlow in 2015. We argue that these

breakthroughs were not predictable during the baseline period and thus should not have

influenced the occupation structure of establishments at that time.

Could ϵfr,t−t0 be correlated with baseline posting shares for other reasons? While we cannot

rule out all potential unobserved shocks affecting both baseline posting shares and subsequent

labor demand trends, our fixed effects already account for varying trends by region, industry

and firm size. Moreover, the rapid adoption of machine learning techniques, as documented in

Section 3, represent a large, generalized shock to the services sector, with no contemporaneous

parallels of which we are aware. This limits the potential for our estimates to be biased by other

unobserved technology shocks.

Following Goldsmith-Pinkham et al. (2020), we provide three robustness checks to affirm

that our instrument is valid, which are discussed in more detail in Online Appendix B.1. First,

we investigate the correlates of the shares, finding that the instrument does not appear to

be correlated with baseline controls. Second, we test for pre-trends by investigating whether

the baseline occupation shares predict year-on-year growth in employment or wages, finding
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no predictive power. Finally, we compare a range of estimators and run over-identification

tests, finding similar results across estimators. All three tests thus support the validity of our

instrument.

4.3 Other potential identification concerns

Our approach also addresses two other potential identification concerns. First, it mitigates the

risk of mean reversion bias when relating total labor demand to AI exposure. In a reduced-form

setting, an idiosyncratic rise in hiring of AI-exposed workers during the baseline period could

artificially inflate an establishment’s measured exposure and subsequently reduce the total

number of posts as the effect dissipates. This could lead to a spurious negative relationship

between AI exposure and vacancy growth. However, our specification uses AI adoption between

2010-12 and 2017-19 as the main regressor, with AI exposure an instrument. For the same bias

to occur, the idiosyncratic increase in 2010-12 posting of AI-exposed occupations would need to

be systematically related to a higher probability of adopting AI between 2010-12 and 2017-19 –

which is not the case for a truly idiosyncratic increase. Our approach in contrast captures the

true effect: high baseline susceptibility to AI capabilities increases the probability of adopting

AI in subsequent years, which in turn lowers total labor demand.

A second potential concern is that the hiring patterns of Indian firms may have influenced AI

innovation, biasing our results. Building on our previous discussion of identification assumptions,

we offer two additional observations. First, India was not a significant producer of new AI

research during our study period, lagging behind major hubs like the USA and China, despite

strengths in applied computer science (Perrault et al. 2019). Thus, global advances in AI

patenting are unlikely to be affected by hiring patterns in Indian firms.24 Second, by excluding

establishments in AI-producing sectors and focusing on AI usage, we drop the establishments

where such concerns would be most relevant.

5 Main Results

5.1 Impacts of AI on labor demand

We first examine the effects of AI adoption on non-AI vacancies. Table 5.1 shows the impact

of AI adoption on the growth of non-AI vacancies and total vacancies, instrumenting with the

Webb (2020) AI exposure measure. AI adoption reduces the growth in non-AI demand: a one

24Indeed, this means our shocks could plausibly be exogenous as well.
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percent increase in the predicted probability of adopting AI (which corresponds to approximately

a one-standard deviation increase in AI exposure in the first stage) results in a 8.1 percentage

point decrease (p<0.01) in non-AI vacancy growth at the establishment level between 2010-12

and 2017-19 in our main specification with region, industry and firm-decile fixed effects. There is

a similarly sized decrease of 7.8 percentage points in the growth of total vacancies, highlighting

that AI vacancies crowd out other white-collar services-sector vacancies.25 Considering that the

median growth rate in total and non-AI vacancies is 24.9 percent, these are substantial effects.

Table 5.1: Second stage: Impact of AI adoption dummy on establishment non-AI vacancies

Growth in Non-AI Vacancies Growth in Total Vacancies

(1) (2) (3) (4) (5) (6)
Adoption of AI -7.975∗∗∗ -12.90∗∗∗ -8.064∗∗∗ -7.737∗∗∗ -12.47∗∗∗ -7.840∗∗∗

(2.350) (3.092) (2.282) (2.245) (2.959) (2.181)
Fixed Effects:
– Region ✓ ✓ ✓ ✓ ✓ ✓
– Industry ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓
First Stage F-Stat 43.7 41.58 45.43 44.06 41.83 45.62
Observations 22,244 22,244 22,244 22,251 22,251 22,251

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

independent variable is a dummy, which equals 1 for establishments that did not post AI vacancies in the baseline period, but

posted AI vacancies in the endline period. The dependent variables are the change in the log of the respective establishment-level

outcomes. AI adoption is instrumented by establishment AI exposure. Each coefficient therefore represents the percentage point

impact upon the outcome variable of a one percent rise in the predicted probability of adopting AI. AI exposure is calculated as

the standardized average of occupation AI exposure (from Webb 2020), over the occupations for which the establishment posts

vacancies in 2010-12, weighted by the number of vacancies posted per occupation, as in Acemoglu et al. (2022). The reported F

statistic is the cluster-robust Kleibergen-Paap Wald F -statistic.

5.2 Mechanisms and distributional impacts

To understand the drivers of these effects and identify which types of jobs and tasks are

most impacted by AI adoption, we explore the heterogeneous impacts of AI adoption across

occupations, skill requirements and tasks. We find the following results:

AI adoption reduces growth in demand for higher-skilled occupations. We first study

the effects of AI on postings at the occupation level, using India’s NCO2004 classification of

one-digit and two-digit occupations. We regress AI adoption on the change in the share of non-AI

vacancies within each occupation group. Table 5.2 shows that the decline in overall demand is

25In both these results, the standard errors increase to 1.38 when implementing the adjustment by Lee et al.
(2022), leaving the finding significant (p<0.05).
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accompanied by a shift away from higher-skilled occupations: the categories of ‘Professionals’

and ‘Managers’ suffer large reductions in their respective shares. For every one percent increase

in the predicted probability of adopting AI, we observe a 10.6 percentage point decrease in the

growth of non-AI vacancies for ‘Managers’ and a 3.6 percentage point decrease for ‘Professionals’.

These impacts are significant, given that these occupations comprised 18 percent and 48 percent

of all postings in the 2010-12 baseline period respectively. Conversely, we note increases in

shares for lower-skilled workers, such as ‘Personal, Sales and Security’, ‘Clerks’ and ‘Associate

Professionals’. These findings align with Webb (2020) who found that AI disproportionately

affects high-skilled jobs involving pattern detection, judgement and optimization, such as clinical

laboratory technicians, chemical engineers and optometrists.

Disaggregating this result further within these two groups using two-digit occupation codes,

Appendix Table B.13 shows that increased AI demand reduces the share of non-AI vacancies

for ‘Engineering Professionals’, ‘General Managers’, and particularly strongly for ‘Corporate

Managers’. In the baseline period, 24 percent of all postings are for ‘Engineering Professionals’,

6 percent for ‘General Managers’, and 12 percent for ‘Corporate Managers’. Reduced vacancies

growth for these three occupations consequently plays a large role in our aggregate results.

Table 5.2: Second stage: Impact of AI adoption on establishment non-AI vacancy shares, by
occupation group

Change in Non-AI Vacancy Shares

Personal, Clerks Associate Professionals Managers
Sales & Security Professionals

Adoption of AI 2.074∗∗∗ 1.324∗∗∗ 10.46∗∗∗ -3.637∗∗∗ -10.59∗∗∗

(0.385) (0.272) (1.718) (0.717) (1.709)
Fixed Effects:
– Region ✓ ✓ ✓ ✓ ✓
– Industry ✓ ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓ ✓
First Stage F-Stat 45.43 45.43 45.43 45.43 45.43
Observations 22,244 22,244 22,244 22,244 22,244

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

independent variable is a dummy, which equals 1 for establishments that did not post AI vacancies in the baseline period, but

posted AI vacancies in the endline period. The dependent variables are the change in occupation shares. Occupation groups

are 1-digit occupations from the NCO04. AI adoption is instrumented by establishment AI exposure. Each coefficient therefore

represents the percentage point impact upon the outcome variable of a one percent rise in the predicted probability of adopting AI.

AI exposure is calculated as the standardized average of occupation AI exposure (from Webb 2020), over the occupations for which

the establishment posts vacancies in 2010-12, weighted by the number of vacancies posted per occupation, as in Acemoglu et al.

(2022). The reported F statistic is the cluster-robust Kleibergen-Paap Wald F -statistic.

AI reduces growth in demand for non-routine task-intensive occupations. We next
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aim to understand more about the relationship between impacts on occupations and their task

content, following the literature examining routine and non-routine task intensity of occupations

(e.g. Autor et al. (2003) and Acemoglu & Autor (2011)). We map the measures of Acemoglu

& Autor (2011) onto India’s NCO2004 classification of occupations and standardize them.26

We then analyze the impact of instrumented AI demand on the change in logged routine and

non-routine scores at the establishment-level. Table 5.3 documents the significant negative effect

of increased AI demand on establishment-level growth in non-routine task intensity. A one

percent higher predicted probability of AI adoption leads to 3.3 percentage point lower growth

in non-routine task intensity. In contrast, the intensity of routine tasks is not significantly

affected.27

This result of declining demand for non-routine tasks could reflect changing task demand

within occupations or a shift in demand between occupations. We hence also ask how AI

adoption affects establishment-level non-routine task intensity within occupation groups, as

shown in Table 5.4. We find that AI adoption also reduces growth in demand for non-routine

tasks within higher-skilled occupations. We find the strongest reduction in non-routine task

growth for the category of ‘Managers’.28

AI reduces demand for analytical and complex communication tasks. The above

measures of task intensity of occupations relied on time-invariant measures of the task content

of occupations from O*NET. But AI could also impact the task content within occupations over

time. We therefore adopt a further, more granular, approach by studying the verbs mentioned

within the text of job adverts. For each establishment, we count both the number of appearances

of each verb and the total number of appearances of all verbs at baseline and endline. We thus

construct a ‘verb share’ for each verb, as well as its change over time. We also repeat this

procedure for groupings of verbs with similar meanings, using the verb classification of Roget’s

Thesaurus as discussed above.

To analyze changing demand in tasks, we run regressions of a similar form to those in

Table 5.1, using changes in verb shares as the dependent variable. Figure 5.1a shows that

26To allow us to consider percentage impacts using logs, we transform the standardized values x to x+ x2,
where x2 is the second lowest observed value, such that all transformed values are positive.

27Online Appendix Table B.14 finds similar results for abstract and routine tasks following Autor & Dorn
(2013), with a negative impact on abstract tasks and no discernible impact on routine tasks.

28The estimated effect differs significantly across occupation groups, with the hypothesis of equal coefficients
rejected at the 1 percent level (p value=0.00). Differences are also generally statistically significant for pairwise
comparisons at the 1 percent level, but insignificant for comparisons of ‘Professionals’ and ‘Personal’, ‘Professionals’
and ‘Clerks’, and ‘Personal’ and ‘Clerks’. Online Appendix Table B.15 repeats Table 5.4 for abstract tasks
following Autor & Dorn (2013), finding similar results of a decline in growth in demand for abstract tasks within
professional and managerial occupation groups, with the latter impact especially large.
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Table 5.3: Second stage: Impact of AI adoption on establishment routine and non-routine tasks

Growth in Non-Routine Tasks Growth in Routine Tasks

(1) (2) (3) (4) (5) (6)
Adoption of AI -3.395∗∗∗ -3.281∗∗∗ -3.258∗∗∗ 0.287 0.243 0.273

(0.889) (0.894) (0.849) (0.841) (0.846) (0.804)
Fixed Effects:
– Region ✓ ✓ ✓ ✓ ✓ ✓
– Industry ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓
First Stage F-Stat 52.87 59.01 56.31 52.87 59.01 56.31
Observations 22,251 22,251 22,251 22,251 22,251 22,251

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

independent variable is a dummy, which equals 1 for establishments that did not post AI vacancies in the baseline period, but

posted AI vacancies in the endline period. We also control for the change in the log of total posts. The dependent variables are the

change in the log of the respective establishment-level outcomes, where we have shifted the mean of the distributions of routine

and non-routine scores to be able to take logarithms. We average standardised routine and non-routine O*NET task contents

by occupation, and form establishments’ routine and non-routine task demand by weighting occupations by their standardized

routine and non-routine scores. AI adoption is instrumented by establishment AI exposure. Each coefficient therefore represents

the percentage point impact upon the outcome variable of a one percent rise in the predicted probability of adopting AI. AI

exposure is calculated as the standardized average of occupation AI exposure (from Webb 2020), over the occupations for which the

establishment posts vacancies in 2010-12, weighted by the number of vacancies posted per occupation, as in Acemoglu et al. (2022).

The reported F statistic is the cluster-robust Kleibergen-Paap Wald F -statistic.

AI demand negatively impacts the share of verbs related to ‘Intellectual Faculties’ in Roget’s

Thesaurus. Specifically, a one percent increase in predicted AI adoption probability leads to a

0.29 percentage point decline in the share of those verbs. Figure 5.1b further breaks down this

effect, showing statistically significantly negative effects on three sections within the ‘Intellectual

Faculties’ category: i) ‘Precursory Conditions’, involving analytical tasks (e.g. ‘investigate’,

‘research’ and ‘explore’), ii) ‘Means of Communicating Ideas’ involving complex communication

tasts (e.g. ‘narrate’ and ‘describe’) and to a lesser extent iii) ‘Extension of Thought’, involving

prediction (e.g. ‘predict’ and ‘forecast’). These verbs align closely with known AI capabilities

and support the idea that AI reduces the cost or improves the quality of the task of ‘prediction’

prevalent across many occupations (Agrawal et al. 2018).
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Table 5.4: Second stage: Impact of AI adoption on establishment non-routine tasks, by
occupation group

Growth in Non-Routine Tasks

Personal, Clerks Associate Professionals Managers
Sales & Security Professionals

Adoption of AI 0.113 -1.363∗∗ -6.378∗∗∗ -5.564∗∗∗ -10.76∗∗∗

(0.462) (0.552) (1.646) (1.612) (2.052)
Fixed Effects:
– Region ✓ ✓ ✓ ✓ ✓
– Industry ✓ ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓ ✓
First Stage F-Stat 47.03 46.82 49.29 48.36 47.19
Observations 22,251 22,251 22,251 22,251 22,251

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

independent variable is a dummy, which equals 1 for establishments that did not post AI vacancies in the baseline period, but

posted AI vacancies in the endline period. The dependent variables are the change in the log of the respective establishment-level

outcomes, where we have shifted the mean of the distributions of routine and non-routine scores to be able to take logarithms.

We average standardized routine and non-routine O*NET task contents by occupation, and form establishments’ routine and

non-routine task demand by weighting occupations by their standardized routine and non-routine scores. We control for the change

in the respective occupation’s vacancy share. AI adoption is instrumented by establishment AI exposure. Each coefficient therefore

represents the percentage point impact upon the outcome variable of a one percent rise in the predicted probability of adopting AI.

AI exposure is calculated as the standardized average of occupation AI exposure (from Webb 2020), over the occupations for which

the establishment posts vacancies in 2010-12, weighted by the number of vacancies posted per occupation, as in Acemoglu et al.

(2022). The reported F statistic is the cluster-robust Kleibergen-Paap Wald F -statistic.
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Figure 5.1: Impact of 1 unit higher establishment AI demand growth on verb usage by class
and section

(a) By verb class

(b) By verb section within Intellectual Faculties, and example verbs

Notes: These coefficient plots show the impact of AI adoption on verb share growth between 2010-2012 and 2017-2019, where verb
shares are formed from counting verbs in job descriptions of job ads. Point estimates accompanied by 95 percent and 90 percent
confidence intervals. Each coefficient is from a regression of type (3) in Table 5.1. Here, the outcome variable is growth in the share
of verbs from the respective section or class. AI adoption is instrumented by establishment AI exposure. Each coefficient therefore
represents the percentage point impact upon the outcome variable of a one percent rise in the predicted probability of adopting AI.
AI exposure is calculated as the standardized average of occupation AI exposure (from Webb 2020), over the occupations for which
the establishment posts vacancies in 2010-12, weighted by the number of vacancies posted per occupation, as in Acemoglu et al.
(2022). Standard errors are clustered at the firm level, and we include region, firm size decile and industry fixed effects.

25



5.3 Impacts of AI on wage offers

We analyze wage offers by taking advantage of the platform’s standardized job postings template,

requiring firms to list wage offers for all vacancies.29 Table 5.5 documents the impact of AI

adoption on the growth of median wages for both non-AI postings and all job postings. We find

that a one percent higher predicted probability of AI adoption reduces the growth of non-AI

wage offers by 5.5 percentage points between 2010-12 and 2017-19, instrumenting with AI

exposure and controlling for region, industry and firm size fixed effects. This negative effect

remains largely unchanged when considering all posts, including AI postings, despite the higher

wage offers associated with AI posts.

Table 5.5: Second stage: Impact of AI adoption on establishment non-AI wages

Growth in Non-AI Median Wage Growth in Overall Median Wage

(1) (2) (3) (4) (5) (6)
Adoption of AI -5.696∗∗∗ -6.351∗∗∗ -5.514∗∗∗ -5.452∗∗∗ -6.089∗∗∗ -5.273∗∗∗

(1.485) (1.630) (1.423) (1.424) (1.566) (1.366)
Fixed Effects:
– Region ✓ ✓ ✓ ✓ ✓ ✓
– Industry ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓
First Stage F-Stat 45.14 42.91 46.86 45.46 43.12 47.02
Observations 22,064 22,064 22,064 22,071 22,071 22,071

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

independent variable is a dummy, which equals 1 for establishments that did not post AI vacancies in the baseline period, but

posted AI vacancies in the endline period. The dependent variables are the change in the log of the respective establishment-level

outcomes. AI adoption is instrumented by establishment AI exposure. Each coefficient therefore represents the percentage point

impact upon the outcome variable of a one percent rise in the predicted probability of adopting AI. AI exposure is calculated as

the standardized average of occupation AI exposure (from Webb 2020), over the occupations for which the establishment posts

vacancies in 2010-12, weighted by the number of vacancies posted per occupation, as in Acemoglu et al. (2022). The reported F

statistic is the cluster-robust Kleibergen-Paap Wald F -statistic.

The negative impact of AI demand on non-AI wage offers is evident across the wage offer

distribution, with effects statistically significantly different from zero from the 20th percentile

onwards. Figure 5.2 illustrates the impact of a one percent higher predicted probability of AI

adoption on wage offer growth at various percentiles of the establishment-level distribution

between 2010-12 and 2017-19, using the same AI exposure instrument and fixed effects as above.

We observe a statistically significant reduction (at the 5 percent level) in establishment-level

wage offers for non-AI jobs over time, ranging from -2.5 to -4.4 percent across the distribution.

29This contrasts with commonly used platforms in advanced economies, where wage offer information is
missing for the majority of posts (Batra et al. 2023).
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Figure 5.2: Impact of AI adoption on the wage offer distribution in non-AI posts

Notes: This coefficient plot shows the impact of a one percent rise in the predicted probability of adopting AI on wage growth over

time across the distribution of establishment wage offers. As in Online Appendix Table B.17, AI adoption is instrumented by AI

exposure. Each coefficient is from a regression of type (3) in Appendix Table B.17 and represents the impact of a one percent rise in

the predicted probability of adopting AI on wage growth over time for a given percentile of the wage offer distribution. Standard

errors are clustered at the firm level, and we include region, firm size decile and industry fixed effects. The outer (inner) error bars

reflect 95 percent (90 percent) confidence intervals. Since AI posts make up only a small share of all roles in most establishments,

the pattern is very similar across the distributions for all posts and for non-AI posts only.

The observed lower wage growth associated with AI demand could stem from two potential

sources: between-occupation or within-occupation effects. In other words, AI could change the

occupational composition, thereby shifting the median wage offer, or it could reduce wage offers

for individual occupations. Our findings in Table 5.2 showed that AI demand lowers hiring

growth for the highest paid occupations, which likely contributes to the downward shift in overall

wage offers. However, evaluating wage offer effects within occupation groups is challenging due

to small sample sizes when splitting the data by occupation group.30 When we add controls for

changing occupation group shares, we find no significant declines in wage offer growth at the 5

percent level of significance, suggesting that composition effects are the primary driver of the

results.

30We nevertheless report heterogeneous results on wage offers by occupation group in Online Appendix Table
B.16, finding weak negative effects for higher-skilled occupation groups.

27



Figure 5.3: Impact of AI adoption on the non-AI wage offer distribution, holding occupational
composition fixed

Notes: This coefficient plot shows the impact of a one percent rise in the predicted probability of adopting AI on wage growth over

time across the distribution of establishment wage offers, controlling for the change in shares of 1-digit NCO04 occupations, leaving

out ‘Professionals’. As in Online Appendix Table B.17, AI adoption is instrumented by AI exposure. Each coefficient is from a

regression of type (3) in Online Appendix Table B.17 and represents the impact of a one percent rise in the predicted probability of

adopting AI on wage growth over time for a given percentile of the wage offer distribution. Standard errors are clustered at the firm

level, and we include region, firm size decile and industry fixed effects. The outer (inner) error bars reflect 95 percent (90 percent)

confidence intervals.

6 Robustness and Extensions

In this section, we first show that our findings are robust to several variations of our main

specification and an event-study approach. We then investigate wider effects of AI, beyond

the establishment level, and find significant impacts on (national) firms that adopt AI, but no

robust evidence yet for aggregate district-level effects.

6.1 Alternative specifications

We show that our results are robust to several alternative specifications, with results provided

in Online Appendix B. First, we show that our results are robust to adding additional controls

for the baseline establishment posting shares of software engineers and sales and administrative

professionals, following Acemoglu et al. (2022). By controlling for two broad occupations that see

a decline due to computerization (Autor & Dorn 2013), we account for the possibility that firms

experiencing increased demand for machine learning skills might also be software-engineering

intensive or more affected by computerization. Our results remain robust with these additional

controls (Tables B.18 to B.21).

Second, we show that our results are robust to using a shorter time period between baseline

(2013-15) and endline (2017-19) in Tables B.22 to B.23. This approach draws on a larger sample
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of firms, as firms are more likely to post in this shorter timeframe, but at the cost of not spanning

the entire takeoff in AI demand (Figure 3.1). Nonetheless, the results are similar to those in

the main specification. This shorter long-difference also allows us to differentiate between firms

newly appearing in the data (termed ‘startups’ for convenience) and older firms (‘incumbents’)

appearing in the data from the start.31 In Tables B.24 and B.25, we show evidence of negative

impacts on labor demand and wage offers in both groups of firms in the shorter long-difference

specification, albeit less significant for newer firms where there is a weaker first stage.

Third, we demonstrate the robustness of our results using an alternative dependent variable

that goes beyond our main ‘AI demand’ measure by taking into account the full quantity of AI

vacancies posted by an establishment, rather than simply whether it is positive. In Tables B.26

to B.29, we replace AdoptsAIfr,t−t0 in equation 4.1 with either the log of one plus the number of

AI posts by an establishment or the inverse hyperbolic sine transformation of the same. These

measures introduce an intensive margin (albeit at a cost to interpretability, as discussed in Chen

& Roth (2023)). Nevertheless, the consistent findings across specifications provide reassurance

that our results are not driven by our choice of independent variable.

Lastly, we confirm the robustness of our results to several other specification decisions. Our

findings remain unchanged when weighting by baseline establishment size (Tables B.30 and

B.31), where this is proxied by the total number of vacancies posted in the baseline, with the

upper 5 percent winsorized to reduce the dominance of the top firms as highlighted in Section

3. Likewise, our results are robust to using a two-step consistent estimator accounting for

endogenous treatment instead of a one-step linear probability model (Tables B.32 and B.33)

following Wooldridge (2010). Our wage results are robust to using mean rather than median

wage offers (Table B.34). Finally, when using the alternative AI exposure measure of Felten et al.

(2018), we find similar negative impacts on wage offers and relative demand for professionals

and managers (Appendix B.4).

6.2 Event-study approach

Our long-difference approach focuses on a fixed window (from 2010-12 to 2017-19) centered

on the national (and global) take-off in AI demand in the middle of the 2010s. To provide

an alternative perspective, we also take an event study approach, centering our analysis on

the specific moment each establishment first posts an AI vacancy. This in turn allows the

observation window to vary across establishments. In this case, the ideal experiment would

31Specifically, we classify an establishment as an incumbent if it posts vacancies in the years 2010-2012 and
2017-19, and as a startup if it posts vacancies in 2013-15 and 2017-19 but not 2010-12.
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compare the post-adoption outcomes of each AI-adopting establishment to those of an otherwise

identical establishment that instead did not adopt AI. However, AI adopters are unlikely to

resemble the average firm – for instance, they tend to be larger, as shown in Section 3.

To approach the ideal ‘otherwise identical’ counterfactual, we therefore follow Koch et al.

(2021) in matching AI adopters to similar non-adopters using propensity scores. We construct

these by running a Probit regression of AI adoption on a range of lagged establishment char-

acteristics and hence deriving predicted adoption probabilities.32 By accounting flexibly for a

wide range of observables, this approach aims to control for unobservable differences between

establishments. Rosenbaum & Rubin (1983) show that the propensity score is a balancing score,

such that conditional on the propensity score, AI adoption is indeed orthogonal to observable

establishment characteristics.

We then run an annual propensity score-weighted event-study regression at the level of

establishments i:

Yit = αi + αt +
2∑

k=−3\−1

βk · 1(Kit = k) + β3+ · 1(Kit ≥ 3) + ϵit (6.1)

where Yit is the inverse hyperbolic sine (IHS)-transformed number of job postings, αi and αt

respectively are establishment and time fixed effects, and Kit is the time difference between the

current year and adoption of AI.33 We include three lags and leads, omitting the first lead to

normalize the difference between adopters and similar non-adopters to zero in the year before

adoption. The estimates βk then measure the impact of AI adoption on the IHS of Yit, relative

to the level in similar non-adopters.

Figure 6.1 plots the resulting estimates. We find that, following an initial positive impact

of AI adoption on non-AI vacancies, non-AI vacancies are significantly lower (at the 5 percent

level) in the second year after adoption. This negative impact increases in magnitude in the

third year following AI adoption. Non-AI vacancies are 0.7 IHS points lower for adopters in the

second year after adoption, and one IHS point lower three years after adoption.34

32Specifically, we include lags of firm size decile, establishment size, salary, experience levels, firm age, the
standard deviation of salaries and experience, and several interaction terms, as shown in Online Appendix Table
B.36.

33We take the inverse hyperbolic sine transformation to balance the panel such that firms that do not post
within a year are not dropped from the sample.

34These findings are also robust to using the imputation estimator of Borusyak, Jaravel & Spiess (2021).
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Figure 6.1: Event study for non-AI postings following AI adoption

Notes: Two way fixed effects on a balanced panel. The outcome variable is the IHS-transformed number of establishment non-AI

vacancies. Adopters are matched to never adopters by propensity score weighting, with propensity scores from a Probit regression of

establishment characteristics on AI adoption (see Online Appendix Table B.36 for details). We leave out the first lead as the base

period and cluster standard errors on establishments.

6.3 Wider effects

Does AI demand affect broader labor market outcomes, beyond the establishment level? First,

we consider impacts at the firm level by aggregating nationally across a firm’s constituent

establishments. Tables 6.1 and 6.2 respectively show the results for the number of vacancies and

the median wage offer. While the sample size drops substantially due to the aggregation and

the F -statistic is correspondingly much weaker, we nonetheless find significant negative impacts

of AI adoption on the growth in firms’ overall posting of vacancies and their average wage offers.

Second, we consider impacts at the district level by aggregating across establishments in

a given region (Table 6.3), with a significant reduction in sample size. We nonetheless find

that AI exposure predicts AI adoption (column 1), but we do not find a significant impact on

growth in non-AI or total vacancies (columns 2 and 3), and at most weak evidence (p < 0.11)

for a negative effect on non-AI and overall wage offer growth (columns 4 and 5). Given the

weak first stage in these long-difference regressions, we also explore results from a district-level

event-study approach (Appendix Figure B.2), but again do not detect a significant impact of AI

adoption on labor demand. Given that only 3.9 percent of establishments in our study used AI

between 2010 and 2019, it is unsurprising that the impact of AI adoption on labor demand in
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AI-using industries is not detectable in district-level aggregates. This suggests that the effect,

while present at the establishment level, was too small to influence broader labor market trends

during our study period.

Table 6.1: Second stage: Impact of AI adoption on firm non-AI vacancies

Growth in Non-AI Vacancies Growth in Total Vacancies

(1) (2) (3) (4) (5) (6)
Adoption of AI -4.603∗ -12.05∗∗ -3.140 -4.377∗∗ -10.44∗∗ -3.111∗

(2.445) (5.934) (2.079) (2.186) (4.722) (1.860)
Fixed Effects:
– Industry ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓
First Stage F-Stat 18.38 7.268 18 19.7 8.475 19.16
Observations 5,701 5,702 5,701 5,703 5,704 5,703

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

independent variable is a dummy, which equals 1 for establishments that did not post AI vacancies in the baseline period, but

posted AI vacancies in the endline period. The dependent variables are the change in the log of the respective establishment-level

outcomes. AI adoption is instrumented by establishment AI exposure. Each coefficient therefore represents the percentage point

impact upon the outcome variable of a one percent rise in the predicted probability of adopting AI. AI exposure is calculated as

the standardized average of occupation AI exposure (from Webb 2020), over the occupations for which the firm posts vacancies in

2010-12, weighted by the number of vacancies posted per occupation, as in Acemoglu et al. (2022). The reported F statistic is the

cluster-robust Kleibergen-Paap Wald F -statistic.
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Table 6.2: Second stage: Impact of AI adoption on firm non-AI wages

Growth in Non-AI Median Wage Growth in Overall Median Wage

(1) (2) (3) (4) (5) (6)
Adoption of AI -2.983∗∗ -5.211∗∗ -3.034∗∗ -2.690∗∗ -4.365∗∗ -2.703∗∗

(1.204) (2.507) (1.228) (1.089) (2.044) (1.105)
Fixed Effects:
– Industry ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓
First Stage F-Stat 18.65 7.356 18.23 19.97 8.565 19.38
Observations 5,671 5,672 5,671 5,673 5,674 5,673

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

independent variable is a dummy, which equals 1 for establishments that did not post AI vacancies in the baseline period, but

posted AI vacancies in the endline period. The dependent variables are the change in the log of the respective establishment-level

outcomes. AI adoption is instrumented by establishment AI exposure. Each coefficient therefore represents the percentage point

impact upon the outcome variable of a one percent rise in the predicted probability of adopting AI. AI exposure is calculated as the

standardized average of occupation AI exposure (from Webb 2020), over the occupations for which the firm posts vacancies in

2010-12, weighted by the number of vacancies posted per occupation, as in Acemoglu et al. (2022). The reported F statistic is the

cluster-robust Kleibergen-Paap Wald F -statistic.

Table 6.3: AI adoption at the district level

AI Adoption Non-AI Vacancies Vacancies Non-AI Wages Wages

(1) (2) (3) (4) (5)
First stage:

AI Exposure 0.0253∗∗

(0.0107)

Second stage:

Adoption of AI 0.601 0.610 -2.430 -2.411
(1.995) (1.996) (1.519) (1.514)

First Stage F-Stat 5.569 5.569 6.300 6.300
Observations 399 399 399 399 399

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the district level. The

dependent variables are the growth between 2010-12 and 2017-19 in district AI vacancies, non-AI vacancies, total vacancies, non-AI

wages, and total wages, each in log differences. The independent variable for the first stage is district AI exposure, calculated as the

standardized average of occupation AI exposure (from Webb 2020), over the occupations for which the district posts vacancies in

2010-12, weighted by the number of vacancies posted per occupation, as in Acemoglu et al. (2022). The first coefficient therefore

represents the impact on the probability to adopt AI of a one-standard deviation rise in AI exposure. The independent variable for

the second stage is a dummy for district AI adoption between 2010-12 and 2017-19. AI adoption is instrumented by district AI

exposure. The latter four coefficients therefore represent the percentage impact on the outcome variable of a one percent rise in the

predicted probability of adopting AI. The reported F statistic is the cluster-robust Kleibergen-Paap Wald F -statistic.
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7 Conclusion

AI could have important implications for a services-led development model, given the potential

for recent advances in machine learning to automate many service sector occupations. In this

paper, we use a new dataset of online vacancy posts from India’s largest jobs website to shed

light on the demand for, and implications of, AI capabilities in the white-collar services sector.

We document a rapid take-off in demand for AI-related skills from 2015, particularly in the

IT, finance and professional services industries, closely mirroring patterns found for advanced

economies (Grennan & Michaely 2020, Acemoglu et al. 2022). AI jobs pay a substantial wage

premium and are highly concentrated in certain industries, cities and large firms.

We assess the labor market effects of establishment-level demand for AI skills, as a proxy

for AI deployment. Employing a long-difference shift-share specification based on exposure

to patented advances in AI capabilities (Webb 2020), we find that AI adoption significantly

reduces growth in non-AI postings and average wage offers. This decline primarily reflects a

reduction in demand for skilled managerial and professional occupations, non-routine work, and

analytical and communication tasks. This contrasts with previous findings on computerisation

and robotics, which primarily affected routine tasks (Autor et al. 2003, Goos & Manning 2007,

Goos et al. 2014).

Taking an even more granular approach and classifying verbs in the text of the job adverts

using Roget’s Thesaurus, we find that AI adoption reduces demand for verbs related to ‘intellec-

tual faculties’, particularly those relating to investigation, prediction and description. These

results are in line with the notion that machine learning reduces the cost or improves the quality

of the task of ‘prediction’ (Agrawal et al. 2018).

Our findings underscore AI’s potential to reduce the availability of high-skilled, high-wage

white-collar jobs in developing countries — traditionally the target of services-led development

strategies. However, while we observe significant negative impacts of AI adoption on labor

demand and wage offers within firms, these effects do not translate to significant changes in

district-level aggregates. This discrepancy likely stems from the relatively small proportion of

establishments adopting AI during our sample period, such that their adoption decisions did

not have a detectable impact on aggregate regional outcomes. As AI usage diffuses more widely,

understanding the impacts on local labor markets in developing countries will be an important

task for future research.
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This supplementary online appendix contains two sections. Appendix A lays out how we

construct our dataset, benchmarks it against administrative data, discusses representativeness,

and provides additional descriptives. Appendix B provides an array of additional results related

to our shift-share instrument, our main specification, and alternative specifications.
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Appendix A Data and Descriptives

A.1 Construction of the vacancy dataset

The largest online job postings platform in India shared 80 percent of all job postings on its site

(randomly sampled) from 2010 to 2019. All posts include text data on the job title, industry, role

category, location, skills required, salary and experience ranges and educational requirements. We

manually map 99 percent of role titles to the 2004 Indian National Classification of Occupations

(NCO) at the four-digit level. We also manually map all industries to the 2008 Indian National

Industrial Classification (NIC) at the two-digit level. We clean 95 percent of city names and

add geo-locations, separating out overseas job postings. Using the geolocations, we match cities

to districts, using the 2011 census. Figure A.1 shows the distribution of posts across districts.

Figure A.1: Total posts by district, 2010-2019

Notes: This map shows the distribution of our online vacancy posts across Indian districts for the entire period 2010-2019. Labels

are shown for the ten cities with the largest numbers of posts.

Table A.1 summarises the number of observations in our main dataset, as well as in three

other datasets that we use to gauge its representativeness (see the next section). We also use

publicly-available crosswalks to translate the AI exposure measures to the Indian context. We
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map the 2000 Standard Occupation Classification used by Webb (2020) to the 2004 Indian

National Classification of Occupations (NCO) via the 1988 International Standard Classification

of Occupations (ISCO), at the four-digit level. For the Felten et al. (2018) measure, we map the

2008 ISCO to the 1988 ISCO, before again mapping onto the 2004 NCO.

Table A.1: Number of observations by data source

Online vacancy postings 2010-2019 #Firms #Posts

Agriculture 13,811 463,675
Manufacturing 57,980 2,543,995
Services∗ 167,969 15,481,330
— Financial 17,805 1,815,798
— Information 72,057 5,834,878
— Professional 38,533 834,932
— Other 106,798 6,995,722

Prowess (balance sheets) #Firms #Observations

Agriculture 123 590
Manufacturing 2,276 11,257
Services 3,675 16,722
— Financial 1,020 4,830
— Information 516 2,557
— Professional 199 811
— Other 1,940 8,524

Surveys (demographics) #Districts #Households

National Sample Survey 2012 626 101,725
Periodic Labour Force Survey 2018 646 102,063

Notes: Some services firms post in multiple sub-sectors, hence the total number of
services firms is less than the sum of all firms posting in the sub-sectors.

A.2 Representativeness of the vacancy data

In this section we evaluate the representativeness of our vacancy data in relation to the broader

Indian labor market by benchmarking against widely-used administrative datasets and labor

surveys. First, we consider the number of vacancies in the dataset. The Indian Labour Ministry

estimates that India’s services sector formally employs approximately 18.9 million workers.1 Our

unrestricted sample for 2010-19 includes approximately 15.5 million vacancies in the services

sector. To compare these numbers, we need to turn the flow variable of hiring into the stock of

employment. Shimer (2012) documents a job separation rate of 3.4 percent for the US. If we

also assume this number for India, this implies 6.4 million job ads over 10 years. This disregards

1See the January 2022 Quarterly Employment Survey, available at https://static.pib.gov.in/

WriteReadData/specificdocs/documents/2022/jan/doc20221104101.pdf
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the growth of India’s service sector, however, and if we assume that one quarter of job posts

are replacement and three quarters are employment growth, this implies about 25.7 million job

ads should be expected in the formal services sector over the course of 10 years. For this rough

estimate, our coverage would be approximately 60 percent. While this back-of-the-envelope

estimate is necessarily imprecise due to the lack of comprehensive worker censuses over our

full sample period, we consider it nonetheless reassuring that our data are likely to reflect a

substantial share of the market that we aim to understand.

We next consider the composition of the data relative to three widely used administrative

datasets: firm balance sheet data from Prowess, and nationally representative labor surveys

conducted in 2011-2012 (the National Sample Survey) and in 2017-2018 (the Periodic Labour

Force Survey). The industry distribution of services firms in the vacancy data and the Prowess

firm dataset are shown in Figure A.2 Panel (a). The distribution of vacancies is shown in

Panel (b), alongside the distribution of equivalent white-collar services sub-industries in the

pooled National Sample Survey (NSS) and Periodic Labour Force Survey (PLFS).2 The vacancy

dataset has relatively fewer finance, insurance and real estate firms than Prowess, but a greater

share of vacancies in that sector relative to the representative labor surveys. The national

surveys also report relatively more workers in education and transportation, likely because they

include public sector workers, whereas the vacancies and Prowess balance sheet data include only

private firms. Panel (c) shows the distribution of occupations in the vacancy data in contrast

to the national surveys. As would be expected, the vacancy data is over-representative of

high-skill white-collar jobs and under-representative of lower-skilled jobs, such as shop assistants

or security guards, which are more typically filled through referrals and offline hiring. Panel (d)

compares the number of firms over time in Prowess and the vacancy data. Prowess is not a firm

census but is instead based on firms’ published financial reports; it significantly over-represents

India’s largest firms (Goldberg et al. 2009).3 In contrast, the barrier to appearing in our vacancy

dataset is low, since the process for setting up an account and posting an online job advert is

simple and does not require accounting expertise or other specialized training. We therefore see

substantially more firms in the vacancy data than in Prowess, albeit with the total number of

firms following a similar trajectory over time.

2We define white-collar services workers in the NSS context as salaried workers in divisions 1-5 of the
2004 Indian National Classification of Occupations, i.e. excluding agricultural, fishery, craft, manufacturing,
elementary and unclassified workers.

3Specifically, Prowess contains longitudinal balance sheet data on all publicly listed and many large private
Indian firms, as long as they submit financial statements to the government. About a third of Prowess firms are
publicly listed, and even among those, some do not submit financial statements to the government (Alfaro &
Chari 2009). There are many firms that both are not listed and do not submit financial statements, so do not
appear in the dataset.
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Figure A.2: Comparison of vacancy data with Prowess firm-level data and labor force surveys

(a) Firm distribution (b) Worker/vacancy distributions

(c) Occupation distribution (d) Number of firms by year

Notes: These figures compare the composition of our vacancy dataset (red) to that of available administrative datasets (blue). Panel (a) shows the distribution of firms across industries relative to

Prowess. Panel (b) compares the distribution of vacancies to that of workers in the NSS and PLFS. Panel (c) shows the distribution of white-collar services occupations relative to NSS and PLFS.

Panel (d) compares the number of firms in the vacancy data to that in Prowess.
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Finally, we examine the firm size distribution in our data by comparing the distribution

of vacancies per firm to the distribution of employees per firm in Prowess. Figure A.3 shows

the results; in both cases, we focus on firms active between 2010 and 2019 and in the services

sector. Comparing Panels (a) and (b) illustrates that Prowess is missing the left-tail of the

distribution, as expected by its focus on large firms that report financial statements. When

analysing employment per firm and vacancies per firm for the subset of firms larger than the

median in Prowess (about 3,500 employees), we show in Panels (c) and (d) that our vacancies

dataset has a firm size distribution very similar to Prowess.

Figure A.3: Histogram of employment per firm (Prowess) and vacancies per firm (vacancies
data)

(a) Employment per firm (Prowess) (b) Vacancies per firm (vacancies data)

(c) Employment per large firm (Prowess) (d) Vacancies per large firm (vacancies data)

Notes: Panel (a) shows a histogram for employment per firm in Prowess, while Panel (b) shows a histogram for posted vacancies

data per firm in our vacancies data. Panel (c) restricts the employment per firm in Prowess to values above the median and Panel

(d) restricts vacancies per firm in our vacancies data by the same cut-off, i.e. the firm size median in Prowess. For both histograms,

we restrict the sample to the services sector and to firms active in our sample period, 2010-2019.
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A.3 Details on the restricted sample

This section provides further details on the ‘restricted sample’, i.e., the sample on which we run

our main long-difference regressions. This sample reflects three sets of restrictions. First, as

with all analysis in the paper, we focus on non-remote, full-time, permanent jobs located in

India in the white-collar services sector. Second, and as with all causal analysis in the paper

(i.e., excluding the descriptives in Section 3), we focus on ‘AI-using’ industries only (as opposed

to also including ‘AI-producing’ industries). Finally, and in contrast to the event study in

Section 6.2, we focus only on establishments that post vacancies in both the baseline (2010-2012)

and endline (2017-2019). Table A.2 shows summary statistics for this sample (pooling 2010-12

and 2017-19, unless otherwise stated), while Table A.3 provides further summary statistics

for differences between the baseline and endline. Lastly, Figure A.4 shows histograms of key

variables and of the log of these variables.

Figure A.4: Histograms of key variables

(a) Growth in Total Posts (b) Growth in log of Total Posts

(c) Growth in Non-AI Wage Offers (d) Growth in log of Non-AI Wage Offers

Notes: This figure shows histograms for growth in vacancies and growth in non-AI wage offers. The left hand side shows growth in

levels and the right hand side shows growth in the log of the respective variable. For growth in levels, we display the variables

winsorized at the 1 percent level to exclude outliers and improve the legibility of these graphs.
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Table A.2: Key descriptives of vacancy data in restricted sample, all jobs and AI jobs only

All Jobs AI Jobs
# Job Posts 1,902,969 16,827
% Posts in Baseline (2010-2012) 36 2.6
# Establishments 24,485 944
% Posts by 5 Most Active Establishments 4.4 63.8
% Posts by 100 Most Active Establishments 11.2 84.9
Mean # Posts Per Establishment 78 18
Median # Posts Per Establishment 16 2
90th Percentile Posts Per Establishment 140 11
10th Percentile Posts Per Establishment 4 1
Mean # Posts per Establishment and Year (2010, 2019) (16, 25) (2, 10)
# Posting Establishment Per Year (2010, 2019) (11,898, 14,998) (37, 457)
Mean # Reposts 3.3 .6
Median # Reposts 3 0
90th Percentile Reposts 6 2
10th Percentile Reposts 1 0
# Firms 5,605 525
% Posts by 5 Most Active Firms 10 73
% Posts by 100 Most Active Firms 29 81
# Cities 442 32
% Posts in Bengaluru 16 43
% Posts in Top 5 Cities 64 92
% Posts in Top 10 Cities 85 99
# Industries (NIC 2008 features 86) 29 24
% Posts in BPO and Call Centres 25 5
% Posts in Banking and Financial Services 21 71
% Posts in Research and Analytics 2 11
# 4-digit Occupations (NCO 2004 features 96) 94 49
% Posts for Computer Programmers 2 16
% Posts for Business Professionals 22 12
% Posts for Technical and Sales Representatives 18 0.4
% Posts for Accountants 7 2
% Posts for Computer Professionals 1 11
% Posts for Computer Systems Designers and Analysts 0.4 1.3
% Posts for Research and Development Managers 0.2 3
% Requiring Undergraduate Education 11 8
% Requiring Postgraduate Education 86 88
Mean Required Work Experience, Years 1.86 2.2
Median Required Work Experience, Years 2 2.5
90th Percentile Work Experience, Years 2.5 2.5
10th Percentile Work Experience, Years 1 1
Mean Annual Salary, Rupees 167,000 389,000
Median Annual Salary, Rupees 100,000 500,000
90th Percentile Annual Salary, Rupees 325,000 500,000
10th Percentile Annual Salary, Rupees 37,500 125,000

Notes: This table shows descriptives for the restricted sample, which includes only establishments that post vacancies in both

the baseline (2010-2012) and endline (2017-2019), and only posts from these years, and only posts in service sector, AI-using (not

producing) industries. These are thus the vacancy posts underlying our data set for the main regressions. The number of NIC 2008

industries in our data is smaller than the total number of these industries. These are 2-digit industries, called divisions in the NIC

2008. The 86 divisions include manufacturing, agriculture, and mining, whereas we only include the services sector.
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Table A.3: Difference (2017-19 over 2010-12) descriptives of vacancy data in restricted sample,
all jobs and AI jobs only

Difference in All Jobs AI Jobs
Mean # Posts 22 .65
90th Percentile # Posts 50 0
Mean AI Share .17% -
Mean Annual Salary, Rupees 17,000 23,000
Median Annual Salary, Rupees 16,000 18,000
90th Percentile Annual Salary, Rupees 27,000 77,000
10th Percentile Annual Salary, Rupees 6,000 16,000
Mean Required Work Experience, Years .15 .15
Median Required Work Experience, Years .18 .18
Median Postgraduate Share 0 0
90th Percentile Postgraduate Share 22% 71%

Notes: Descriptive statistics overall and within AI jobs only.

A.4 Calculating the AI wage premium

This section provides details on our calculation of the AI wage premium. When including

industry-region, industry-time and region-time fixed effects, we find that AI posts on average

offer 30 percent higher wages than non-AI posts (see model (1) of Table A.4). However, this

may be driven by the highest-paying firms also disproportionately hiring AI roles. Therefore,

we add firm fixed effects to control for differences between firms in model (2). Even in this case,

AI posts pay 19 percent more relative to the average non-AI post. Finally, posts that require AI

skills may simply be different types of jobs. Models (3) and (4) therefore include fixed effects

for the occupation and role, using respectively the NCO 2004 classification codes and the more

granular role label built into the online jobs site. A substantial AI premium of 13-17 percent

remains.4

4The interpretation of the control variables is as follows. An extra year of experience is associated with a
more than 35 percent higher salary (at least within the predominantly early-career jobs posted on the site – see
Figure 3.3), while having a Master’s degree is associated with up to 10 percent higher salary. In this sample,
having only a high school education is associated with wage offers 3-6 percent below the baseline of having
an undergraduate degree, though this figure is likely a dramatic underestimate of the effect, given the major
under-representation of lower-skilled professions on the platform. The relationship between wage offers and
having a doctoral degree is expressed predominantly through the firm- and role-effects: conditional on firm and
occupation/role, there is no significant relationship to salary, but without such conditioning salaries are 7-13
percent higher. This is consistent with the wage offer premium for workers with doctorates being driven by
taking higher-skilled jobs at more advanced firms.
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Table A.4: Wages in AI vs. non-AI roles

log Annual Salary

(1) (2) (3) (4)
AI post 0.318∗∗∗ 0.198∗∗∗ 0.128∗∗∗ 0.174∗∗∗

(0.0484) (0.0358) (0.0220) (0.0422)

Experience Required (Years) 0.470∗∗∗ 0.411∗∗∗ 0.386∗∗∗ 0.351∗∗∗

(0.00693) (0.00797) (0.00787) (0.00818)

High School 0.00481 -0.0644∗∗∗ -0.0408∗∗ -0.0395∗∗

(0.0788) (0.0192) (0.0185) (0.0172)

Master’s 0.104∗∗∗ 0.0774∗∗∗ 0.0448∗∗∗ 0.0198∗∗

(0.0144) (0.00990) (0.00781) (0.00814)

Doctorate 0.131∗∗ 0.0741∗ 0.0132 0.00218
(0.0588) (0.0417) (0.0325) (0.0339)

Fixed Effects:
– Industry-Region ✓ ✓ ✓ ✓
– Industry-Year ✓ ✓ ✓ ✓
– Region-Year ✓ ✓ ✓ ✓
– Firm ✓ ✓ ✓
– Occupation Code ✓
– Role Label ✓
R2 0.343 0.535 0.556 0.577
Observations 14012499 13976759 13275348 13976757

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. All regressions include industry-region, industry-time

and region-time fixed effects, and models (2)-(4) also include firm fixed effects. AI post is a dummy such that the coefficient is

the percentage increase in annual salary associated with posts requiring AI skills, after accounting for the control variables and

fixed effects. Similarly, Experience is measured in years, so the coefficient reflects the percentage salary increase associated with

an additional year of experience. The education variables are dummies, with the baseline category being a Bachelor’s degree; for

instance, High School reflects the percentage salary decrease associated with posts that only require a high school education. The

Occupation Code fixed effect also accounts for variation across India’s 4-digit National Classification of Occupations codes, while

the more granular Role Label fixed effect accounts for variation across the firm-specified role categories built into the jobs portal.

Standard errors clustered at the firm level.
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A.5 Further descriptives on AI demand and exposure

This section collects additional descriptives on AI demand and exposure. As with Section

3, these figures all cover both the AI-producing and AI-using sectors. Figure A.5 plots the

cumulative share of AI posts against the corresponding share of all posts. The distribution of

cities’ shares of AI posts and all posts is shown in Figure A.6, while the city-wise distribution of

AI posts over time is shown in Figure A.7. The top 20 roles demanding AI skills in our analysis

are listed in Figure A.8. Finally, Figure A.9 displays exposure to AI by wage offer.

Figure A.5: AI posts by firm size

Notes: We plot the cumulative share of AI posts against the corre-

sponding cumulative share of all posts, for the whole period 2010-2019.

The red 45◦ line indicates a one-for-one increase in the share of AI

posts relative to all posts. The deviation of our scatter plot from the

45◦ line shows the extent to which AI vacancies are disproportionately

posted by the largest firms.

Figure A.6: Shares of posts by city

Notes: Bars show the shares of all posts and AI posts

across cities, for the entire period 2010 to 2019.
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Figure A.7: Cities’ shares of AI posts over time

Notes: This graph shows the distribution of AI posts across cities over time. Each year reflects the share of all AI vacancies in that

year which were in each city. Shares have been remarkably constant. Bengaluru’s share peaked at just over 40 percent in 2014, then

Mumbai’s share in particular has risen subsequently as AI demand increased in finance (see Figure 3.1).

Figure A.8: Top 20 roles demanding AI skills, 2010-2019

Notes: We rank the top roles demanding AI skills by their share of AI posts. All other roles hiring
AI skills are grouped in the ‘Other’ category.
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Figure A.9: AI exposure by occupation wage offers

Notes: This graph shows a smoothed local polynomial regression of the Webb AI exposure measure on occupational wage offers. We

first rank occupations by their average salary across all vacancy posts 2010-2019. We then plot the AI exposure associated with each,

smoothing across a bandwidth of 10 percentage points. In addition to our main measure, from Webb (2020), we also show analogous

results for the alternative measures (Felten et al. 2018, Mani et al. 2020) which we use in robustness checks in Appendix B.
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Appendix B Additional Results and Robustness

This section collects additional results related to our shift-share instrument, our main specifica-

tion, and various robustness checks, as referenced in the main text.

B.1 Shift-share validity and inference

We construct our instrument from baseline (2010-2012) occupation shares at the establishment

level and their respective exposure to AI according to Webb (2020):

Exposurefr,t0 =
∑
o

PostingSharet0fro · ExposureMeasureo (B.1)

This is a Bartik style instrument with occupation shares in the pre-AI baseline that capture

an establishment’s exposure to a common shock: occupation-level advances in AI. We can

test for the exogeneity of the baseline shares following Goldsmith-Pinkham et al. (2020), who

propose several validity checks by analogy with GMM and DiD: investigating correlates of shares,

examining pre-trends, and comparing different estimators and running over-identification tests.

We find that all three provide support for the validity of our instrument.

Test #1: Investigating correlates of shares. We investigate the extent to which the

baseline shares correlate with baseline controls, which could themselves affect hiring and wage

offer trends. To this end, we regress the instrument on baseline controls (the structure of

required education, experience, and wage offers in an establishment). Table B.1 shows the

results, demonstrating that this does not appear to be an issue for the overall instrument. Some

individual occupation shares warrant the inclusion of controls, in particular experience, and we

thus confirm robustness to including these controls in our main specification.

Test #2: Examining pre-trends. Most of our results are derived from the long-difference

specification discussed above. Therefore, we do not have a pre-period and cannot test for

pre-trends. This corresponds to the first empirical example given in Goldsmith-Pinkham et al.

(2020), where the shares are fixed in a time period from which we are forming the first difference,

such that there is no pre-period. We can, however, ask whether our instrument, which is

based on baseline occupation shares, predicts year-on-year employment or salary growth. We

regress annual employment and wage growth from 2014 onwards (so that the first differences

do not contain the baseline years, 2010-2012, from whose occupation shares the instrument

is constructed) on the instrument. The results are shown in Table B.2: we do not find any
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Table B.1: Investigating correlates of shares

Overall Instrument

(1) (2) (3) (4)
Share of Highschool Education -0.166 0.0203 -0.0615 0.0253

(0.192) (0.0929) (0.146) (0.0926)

Share of Undergraduate Education -0.232 0.00812 -0.122 0.0131
(0.194) (0.0915) (0.146) (0.0912)

Share of Postgraduate Education -0.221 0.0403 -0.0999 0.0454
(0.195) (0.0933) (0.147) (0.0928)

Mean Salary 4.86e-09 4.96e-09 4.19e-09 4.97e-09
(4.59e-09) (4.85e-09) (4.37e-09) (4.87e-09)

Mean Experience -0.00217 0.00524 0.00334 0.00512
(0.00823) (0.00442) (0.00590) (0.00445)

Fixed Effects:
– Region ✓ ✓ ✓
– Industry ✓ ✓
– Firm Decile ✓ ✓
Observations 22,201 22,052 22,052 22,052

Notes: Standard errors in parentheses. Standard errors clustered at the firm level. The dependent variable is establishment AI

exposure. This is calculated as the standardized average of occupation AI exposure (from Webb 2020), over the occupations for

which the establishment posts vacancies in 2010-12, weighted by the number of vacancies posted per occupation, as in Acemoglu

et al. (2022). The independent variables are baseline controls.

15



indication of pre-trends: baseline exposure to AI does not predict differential growth rates. This

remains the case when including the set of fixed effects included in our main regressions.

Table B.2: Examining pre-trends for the instrument

Growth in Non-AI Vacancies Growth in Non-AI Median Wage

(1) (2) (3) (4) (5) (6) (7) (8)
Instrument 0.749 -0.492 -0.101 -0.495 -116.1 -439.5 -88.87 -438.3

(2.273) (0.703) (1.885) (0.703) (611.1) (464.0) (616.1) (463.1)
Fixed Effects:
– Region ✓ ✓ ✓ ✓ ✓ ✓
– Industry ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓
Observations 296,730 296,730 296,730 296,730 296,730 296,730 296,730 296,730

Notes: Standard errors in parentheses. Standard errors clustered at the firm level. The independent variable is establishment AI

exposure. This is calculated as the standardized average of occupation AI exposure (from Webb 2020), over the occupations for

which the establishment posts vacancies in 2010-12, weighted by the number of vacancies posted per occupation, as in Acemoglu

et al. (2022). The dependent variables are year-on year growth for 2013-2019.

Test #3: Alternative estimators and over-identification tests. We next compare a

range of estimators (OLS, a range of IV estimators, a machine learning estimator and a Fuller-

like estimator) and run over-identification tests. Following Goldsmith-Pinkham et al. (2020),

we compare Bartik to OLS, over-identified TSLS, using each share as a separate instrument,

the Modified Bias-corrected TSLS (MBTSLS) estimator, the Limited Information Maximum

Likelihood (LIML) estimator, and the HFUL estimator. Similarity in results between HFUL

and LIML on the one hand, and MBTSLS and over-identified TSLS on the other hand supports

the validity of our instrument. Bartik estimates are similar to LIML estimates when including

establishment controls. Results from HFUL and MBTSLS are also similar, further supporting

our instrument. The comparison of alternative estimators suggests validity of our instrument as

we find estimates to be quite similar.

We then run over-identification tests for the HFUL, LIML, and over-identified TSLS estima-

tors, where the null hypothesis is the validity of the over-identifying restrictions. These tests

do not reject the null hypothesis when including controls. For misspecification tests, we test

whether Bartik is sensitive to the inclusion of controls. Similarity in estimates would support

our instrument, and indeed we find support for our instrument’s validity.

Adjusted standard errors. In addition to validity, a further issue with shift-share instruments

concerns standard errors that are correlated. Table B.3 presents results when instead computing

standard errors according to the correction developed by Adão et al. (2019), and finds that our

results are robust.
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Table B.3: Second stage: Impact of AI adoption on establishment non-AI vacancies. Adão,
Kolesár, and Morales (2019) standard errors.

Growth in Non-AI Vacancies Growth in Total Vacancies

(1) (2) (3) (4) (5) (6)
Adoption of AI -7.975∗∗ -12.90∗ -8.064∗∗∗ -7.737∗∗ -12.47∗ -7.840∗∗∗

(3.654) (7.549) (3.265) (3.659) (7.564) (3.269)
Fixed Effects:
– Region ✓ ✓ ✓ ✓ ✓ ✓
– Industry ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓
First Stage F-Stat 26.06 26.31 27.17 26.06 26.31 27.17
Observations 22,251 22,251 22,251 22,251 22,251 22,251

Notes: Standard errors calculated as in Adão, Kolesár, and Morales (2019) in parentheses. * p <0.10, ** p <0.05, *** p <0.01.

Standard errors clustered at the firm level. The independent variable is a dummy, which equals 1 for establishments that did not post

AI vacancies in the baseline period, but posted AI vacancies in the endline period. The dependent variables are the change in the log

of the respective establishment-level outcomes. AI adoption is instrumented by establishment AI exposure. Each coefficient therefore

represents the percentage point impact upon the outcome variable of a one percent rise in the predicted probability of adopting AI.

AI exposure is calculated as the standardized average of occupation AI exposure (from Webb 2020), over the occupations for which

the establishment posts vacancies in 2010-12, weighted by the number of vacancies posted per occupation, as in Acemoglu et al.

(2022).

B.2 Additional results from main specification

This section presents additional results from our main specification. As this concerns the causal

identification of the effects of AI demand on labor demand and wage offers, we are excluding

AI-producing sectors from this analysis, and keep only white-collar services jobs in AI-using

industries. In Table B.4, we show the first stage. Tables B.5 and B.6 repeat the main regressions

on hiring and wage offers when dropping the ten largest firms. Tables B.7 and B.8 repeat the

main regressions when dropping the three establishments accounting for most of the 2016-17

growth in AI vacancies. Similarly, Tables B.9 and B.10 drop the 5 establishments accounting

for almost two thirds of AI job posts as per Table A.2. Tables B.11 and B.12 repeat the main

regressions when excluding establishments in the finance sector. We show that this sector, which

is a major user of AI in India, is not solely driving our findings.

Figure B.1 extends the wage distribution graph to all postings. Table B.13 studies the

impact of AI on 2-digit occupations.5 Table B.14 shows task growth results for abstract and

routine tasks following Autor & Dorn (2013) and confirms the findings of Table 5.3. Similarly,

Table B.15 repeats Table 5.4 for abstract tasks following Autor & Dorn (2013). Table B.16

5The estimated effect differs significantly across occupation groups, with the hypothesis of equal coefficients
rejected at the 1 percent level (p value=0.00). Differences are also generally statistically significant for pairwise
comparisons at the 1 percent level, but insignificant for the comparisons of ‘General Managers’ and ‘Other
Professionals’, and of ‘Health Professionals’ and ‘Teaching Professionals’.
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shows wage growth results by 1-digit occupations.6 Finally, Table B.17 shows wage growth

results when controlling for job profiles.

Table B.4: First stage: Impact of AI exposure on establishment AI adoption

Adoption of AI

(1) (2) (3)
Establishment AI Exposure 0.0103∗∗∗ 0.00965∗∗∗ 0.0106∗∗∗

(0.00156) (0.00149) (0.00157)
Fixed Effects:
– Region ✓ ✓ ✓
– Firm Decile ✓ ✓
– Industry ✓ ✓
R2 .0547 .0434 .062
Observations 22,251 22,251 22,251

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

dependent variable is a dummy, which equals 1 for establishments that did not post AI vacancies in the baseline period, but posted

AI vacancies in the endline period. The independent variable is establishment AI exposure, calculated as the standardized average of

occupation AI exposure (from Webb 2020), over the occupations for which the establishment posts vacancies in 2010-12, weighted

by the number of vacancies posted per occupation, as in Acemoglu et al. (2022). Each coefficient therefore represents the impact on

the probability of adopting AI of a one-standard deviation rise in AI exposure according to a linear probability model.

6The estimated effect does not differ significantly across occupation groups (p value=0.0949).
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Table B.5: Second stage: Impact of AI adoption on establishment non-AI vacancies, excluding
ten largest firms

Growth in Non-AI Vacancies Growth in Total Vacancies

(1) (2) (3) (4) (5) (6)
Adoption of AI -8.297∗∗∗ -13.38∗∗∗ -8.339∗∗∗ -8.041∗∗∗ -12.91∗∗∗ -8.098∗∗∗

(2.366) (3.187) (2.304) (2.259) (3.044) (2.199)
Fixed Effects:
– Region ✓ ✓ ✓ ✓ ✓ ✓
– Industry ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓
First Stage F-Stat 43.01 39.73 44.35 43.38 40.02 44.57
Observations 21,595 21,595 21,595 21,602 21,602 21,602

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

independent variable is a dummy, which equals 1 for establishments that did not post AI vacancies in the baseline period, but posted

AI vacancies in the endline period. The dependent variables are the change in the log of the respective establishment-level outcomes.

AI adoption is instrumented by establishment AI exposure. Each coefficient therefore represents the percentage point impact upon

the outcome variable of a one percent rise in the predicted probability of adopting AI. AI exposure is calculated as the standardized

average of occupation AI exposure (from Webb 2020), over the occupations for which the establishment posts vacancies in 2010-12,

weighted by the number of vacancies posted per occupation, as in Acemoglu et al. (2022). The ten largest firms in terms of baseline

(2010-2012) hiring are excluded.

Table B.6: Second stage: Impact of AI adoption on establishment non-AI wages, excluding ten
largest firms

Growth in Non-AI Median Wage Growth in Overall Median Wage

(1) (2) (3) (4) (5) (6)
Adoption of AI -5.549∗∗∗ -6.287∗∗∗ -5.399∗∗∗ -5.307∗∗∗ -6.019∗∗∗ -5.157∗∗∗

(1.483) (1.661) (1.431) (1.422) (1.593) (1.373)
Fixed Effects:
– Region ✓ ✓ ✓ ✓ ✓ ✓
– Industry ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓
First Stage F-Stat 44.44 41.01 45.76 44.78 41.27 45.94
Observations 21,417 21,417 21,417 21,424 21,424 21,424

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

independent variable is a dummy, which equals 1 for establishments that did not post AI vacancies in the baseline period, but posted

AI vacancies in the endline period. The dependent variables are the change in the log of the respective establishment-level outcomes.

AI adoption is instrumented by establishment AI exposure. Each coefficient therefore represents the percentage point impact upon

the outcome variable of a one percent rise in the predicted probability of adopting AI. AI exposure is calculated as the standardized

average of occupation AI exposure (from Webb 2020), over the occupations for which the establishment posts vacancies in 2010-12,

weighted by the number of vacancies posted per occupation, as in Acemoglu et al. (2022). The ten largest firms in terms of baseline

(2010-2012) hiring are excluded.
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Table B.7: Second stage: Impact of AI adoption on establishment non-AI vacancies, excluding
the three establishments accounting for most of the 2016-17 growth in AI vacancies

Growth in Non-AI Vacancies Growth in Total Vacancies

(1) (2) (3) (4) (5) (6)
Adoption of AI -8.205∗∗∗ -13.23∗∗∗ -8.295∗∗∗ -7.958∗∗∗ -12.78∗∗∗ -8.062∗∗∗

(2.411) (3.176) (2.340) (2.301) (3.036) (2.233)
Fixed Effects:
– Region ✓ ✓ ✓ ✓ ✓ ✓
– Industry ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓
First Stage F-Stat 42.7 40.61 44.43 43.05 40.87 44.62
Observations 22,241 22,241 22,241 22,248 22,248 22,248

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

independent variable is a dummy, which equals 1 for establishments that did not post AI vacancies in the baseline period, but posted

AI vacancies in the endline period. The dependent variables are the change in the log of the respective establishment-level outcomes.

AI adoption is instrumented by establishment AI exposure. Each coefficient therefore represents the percentage point impact upon

the outcome variable of a one percent rise in the predicted probability of adopting AI. AI exposure is calculated as the standardized

average of occupation AI exposure (from Webb 2020), over the occupations for which the establishment posts vacancies in 2010-12,

weighted by the number of vacancies posted per occupation, as in Acemoglu et al. (2022). The three establishments accounting for

most of the 2016-17 growth in AI vacancies are excluded.

Table B.8: Second stage: Impact of AI adoption on establishment non-AI wages, excluding the
three establishments accounting for most of the 2016-17 growth in AI vacancies

Growth in Non-AI Median Wage Growth in Overall Median Wage

(1) (2) (3) (4) (5) (6)
Adoption of AI -5.854∗∗∗ -6.513∗∗∗ -5.664∗∗∗ -5.599∗∗∗ -6.239∗∗∗ -5.411∗∗∗

(1.522) (1.671) (1.458) (1.459) (1.604) (1.398)
Fixed Effects:
– Region ✓ ✓ ✓ ✓ ✓ ✓
– Industry ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓
First Stage F-Stat 44.13 41.93 45.85 44.45 42.15 46
Observations 22,061 22,061 22,061 22,068 22,068 22,068

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

independent variable is a dummy, which equals 1 for establishments that did not post AI vacancies in the baseline period, but posted

AI vacancies in the endline period. The dependent variables are the change in the log of the respective establishment-level outcomes.

AI adoption is instrumented by establishment AI exposure. Each coefficient therefore represents the percentage point impact upon

the outcome variable of a one percent rise in the predicted probability of adopting AI. AI exposure is calculated as the standardized

average of occupation AI exposure (from Webb 2020), over the occupations for which the establishment posts vacancies in 2010-12,

weighted by the number of vacancies posted per occupation, as in Acemoglu et al. (2022). The three establishments accounting for

most of the 2016-17 growth in AI vacancies are excluded.
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Table B.9: Second stage: Impact of AI adoption on establishment non-AI vacancies, excluding
the 5 establishments contributing two thirds of AI job posts

Growth in Non-AI Vacancies Growth in Total Vacancies

(1) (2) (3) (4) (5) (6)
Adoption of AI -8.233∗∗∗ -13.28∗∗∗ -8.327∗∗∗ -7.985∗∗∗ -12.83∗∗∗ -8.093∗∗∗

(2.415) (3.187) (2.344) (2.305) (3.046) (2.237)
Fixed Effects:
– Region ✓ ✓ ✓ ✓ ✓ ✓
– Industry ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓
First Stage F-Stat 42.6 40.5 44.32 42.95 40.75 44.51
Observations 22,239 22,239 22,239 22,246 22,246 22,246

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

independent variable is a dummy, which equals 1 for establishments that did not post AI vacancies in the baseline period, but posted

AI vacancies in the endline period. The dependent variables are the change in the log of the respective establishment-level outcomes.

AI adoption is instrumented by establishment AI exposure. Each coefficient therefore represents the percentage point impact upon

the outcome variable of a one percent rise in the predicted probability of adopting AI. AI exposure is calculated as the standardized

average of occupation AI exposure (from Webb 2020), over the occupations for which the establishment posts vacancies in 2010-12,

weighted by the number of vacancies posted per occupation, as in Acemoglu et al. (2022). The 5 establishments contributing two

thirds of AI job posts as per Appendix Table A.2 have been excluded.

Table B.10: Second stage: Impact of AI adoption on establishment non-AI wages, excluding the
5 establishments contributing two thirds of AI job posts

Growth in Non-AI Median Wage Growth in Overall Median Wage

(1) (2) (3) (4) (5) (6)
Adoption of AI -5.864∗∗∗ -6.531∗∗∗ -5.674∗∗∗ -5.608∗∗∗ -6.256∗∗∗ -5.420∗∗∗

(1.525) (1.676) (1.461) (1.462) (1.609) (1.401)
Fixed Effects:
– Region ✓ ✓ ✓ ✓ ✓ ✓
– Industry ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓
First Stage F-Stat 44.02 41.81 45.74 44.35 42.03 45.9
Observations 22,059 22,059 22,059 22,066 22,066 22,066

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

independent variable is a dummy, which equals 1 for establishments that did not post AI vacancies in the baseline period, but posted

AI vacancies in the endline period. The dependent variables are the change in the log of the respective establishment-level outcomes.

AI adoption is instrumented by establishment AI exposure. Each coefficient therefore represents the percentage point impact upon

the outcome variable of a one percent rise in the predicted probability of adopting AI. AI exposure is calculated as the standardized

average of occupation AI exposure (from Webb 2020), over the occupations for which the establishment posts vacancies in 2010-12,

weighted by the number of vacancies posted per occupation, as in Acemoglu et al. (2022). The 5 establishments contributing two

thirds of AI job posts as per Appendix Table A.2 have been excluded.
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Table B.11: Second stage: Impact of AI adoption on establishment non-AI vacancies, excluding
finance sector

Growth in Non-AI Vacancies Growth in Total Vacancies

(1) (2) (3) (4) (5) (6)
Adoption of AI -14.42∗∗∗ -17.58∗∗∗ -14.47∗∗∗ -14.65∗∗∗ -17.85∗∗∗ -14.70∗∗∗

(4.008) (4.233) (3.950) (4.112) (4.349) (4.056)
Fixed Effects:
– Region ✓ ✓ ✓ ✓ ✓ ✓
– Industry ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓
First Stage F-Stat 28.19 32.57 28.82 27.27 31.49 27.81
Observations 16,558 16,558 16,558 16,561 16,561 16,561

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

independent variable is a dummy, which equals 1 for establishments that did not post AI vacancies in the baseline period, but posted

AI vacancies in the endline period. The dependent variables are the change in the log of the respective establishment-level outcomes.

AI adoption is instrumented by establishment AI exposure. Each coefficient therefore represents the percentage point impact upon

the outcome variable of a one percent rise in the predicted probability of adopting AI. AI exposure is calculated as the standardized

average of occupation AI exposure (from Webb 2020), over the occupations for which the establishment posts vacancies in 2010-12,

weighted by the number of vacancies posted per occupation, as in Acemoglu et al. (2022). Establishments in the finance sector have

been excluded.

Table B.12: Second stage: Impact of AI adoption on establishment non-AI wages, excluding
finance sector

Growth in Non-AI Median Wage Growth in Overall Median Wage

(1) (2) (3) (4) (5) (6)
Adoption of AI -8.346∗∗∗ -8.257∗∗∗ -8.217∗∗∗ -8.477∗∗∗ -8.378∗∗∗ -8.344∗∗∗

(2.436) (2.285) (2.377) (2.496) (2.339) (2.437)
Fixed Effects:
– Region ✓ ✓ ✓ ✓ ✓ ✓
– Industry ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓
First Stage F-Stat 28.32 32.47 28.9 27.39 31.39 27.9
Observations 16,421 16,421 16,421 16,424 16,424 16,424

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

independent variable is a dummy, which equals 1 for establishments that did not post AI vacancies in the baseline period, but posted

AI vacancies in the endline period. The dependent variables are the change in the log of the respective establishment-level outcomes.

AI adoption is instrumented by establishment AI exposure. Each coefficient therefore represents the percentage point impact upon

the outcome variable of a one percent rise in the predicted probability of adopting AI. AI exposure is calculated as the standardized

average of occupation AI exposure (from Webb 2020), over the occupations for which the establishment posts vacancies in 2010-12,

weighted by the number of vacancies posted per occupation, as in Acemoglu et al. (2022). Establishments in the finance sector have

been excluded.
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Table B.13: Second stage: Impact of AI adoption on establishment non-AI vacancy shares, by
granular occupation group

Change in Non-AI Vacancy Shares
Engineering Health Teaching Other Corporate General
Professionals Professionals Professionals Professionals Managers Managers

Adoption of AI -2.689∗∗∗ 0.130 0.212∗∗∗ -1.290∗∗∗ -9.964∗∗∗ -0.626∗∗

(0.494) (0.120) (0.0748) (0.409) (1.589) (0.299)
Fixed Effects:
– Region ✓ ✓ ✓ ✓ ✓ ✓
– Industry ✓ ✓ ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓ ✓ ✓
First Stage F-Stat 45.43 45.43 45.43 45.43 45.43 45.43
Observations 22,244 22,244 22,244 22,244 22,244 22,244

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

independent variable is a dummy, which equals 1 for establishments that did not post AI vacancies in the baseline period, but posted

AI vacancies in the endline period. The dependent variables are the change in occupation shares. Occupation groups are 2-digit

occupations within Professionals and Managers from the NCO04. AI adoption is instrumented by establishment AI exposure. Each

coefficient therefore represents the impact upon the outcome variable of a one percent rise in the predicted probability of adopting

AI. AI exposure is calculated as the standardized average of occupation AI exposure (from Webb 2020), over the occupations for

which the establishment posts vacancies in 2010-12, weighted by the number of vacancies posted per occupation, as in Acemoglu

et al. (2022).

Table B.14: Second stage: Impact of AI adoption on establishment abstract and routine tasks

Growth in Abstract Tasks Growth in Routine Tasks

(1) (2) (3) (4) (5) (6)
Adoption of AI -5.753∗∗∗ -7.208∗∗∗ -5.772∗∗∗ -0.219 -0.193 -0.217

(1.094) (1.348) (1.073) (0.214) (0.193) (0.213)
Fixed Effects:
– Region ✓ ✓ ✓ ✓ ✓ ✓
– Industry ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓
First Stage F-Stat 44.06 41.83 45.62 44.06 41.83 45.62
Observations 22,251 22,251 22,251 22,251 22,251 22,251

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

independent variable is a dummy, which equals 1 for establishments that did not post AI vacancies in the baseline period, but posted

AI vacancies in the endline period. The dependent variables are the change in the log of the respective establishment-level outcomes,

where we have shifted the mean of the distributions of scores to be able to take logarithms. We use the occupational task scores for

abstract, routine, and manual tasks from Autor & Dorn (2013) (based on data from the Dictionary of Occupational Titles 1977)

and map occ1990dd occupations to NCO04 occupations. Scores are standardized as in Acemoglu & Autor (2011). AI adoption is

instrumented by establishment AI exposure. Each coefficient therefore represents the percentage point impact upon the outcome

variable of a one percent rise in the predicted probability of adopting AI. AI exposure is calculated as the standardized average of

occupation AI exposure (from Webb 2020), over the occupations for which the establishment posts vacancies in 2010-12, weighted

by the number of vacancies posted per occupation, as in Acemoglu et al. (2022).
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Table B.15: Second stage: Impact of AI adoption on establishment abstract tasks, by occupation
group

Growth in Abstract Tasks

Personal, Clerks Associate Professionals Managers
Sales & Security Professionals

Adoption of AI -0.0477∗∗ -0.00733 0.296∗∗∗ -1.651∗∗ -29.15∗∗∗

(0.0225) (0.0121) (0.114) (0.780) (4.863)
Fixed Effects:
– Region ✓ ✓ ✓ ✓ ✓
– Industry ✓ ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓ ✓
First Stage F-Stat 45.62 45.62 45.62 45.62 45.62
Observations 22,251 22,251 22,251 22,251 22,251

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

independent variable is a dummy, which equals 1 for establishments that did not post AI vacancies in the baseline period, but posted

AI vacancies in the endline period. The dependent variables are the change in the log of the respective establishment-level outcomes,

where we have shifted the mean of the distributions of scores to be able to take logarithms. We use the occupational task scores for

abstract, routine, and manual tasks from Autor & Dorn (2013) (based on data from the Dictionary of Occupational Titles 1977)

and map occ1990dd occupations to NCO04 occupations. Scores are standardized as in Acemoglu & Autor (2011). AI adoption is

instrumented by establishment AI exposure. Each coefficient therefore represents the percentage point impact upon the outcome

variable of a one percent rise in the predicted probability of adopting AI. AI exposure is calculated as the standardized average of

occupation AI exposure (from Webb 2020), over the occupations for which the establishment posts vacancies in 2010-12, weighted

by the number of vacancies posted per occupation, as in Acemoglu et al. (2022).

Table B.16: Second stage: Impact of AI adoption on establishment non-AI wages, estimated
separately by occupation group

Growth in Non-AI Median Wage

Personal, Clerks Associate Professionals Managers
Sales & Security Professionals

Adoption of AI 0.716 1.816∗ -0.840 -1.073 -2.037∗

(2.060) (1.067) (0.729) (0.942) (1.194)
Fixed Effects:
– Region ✓ ✓ ✓ ✓ ✓
– Industry ✓ ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓ ✓
First Stage F-Stat 6.443 11.67 61.28 23.57 25.89
Observations 981 2,059 13,128 9,296 8,003

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

independent variable is a dummy, which equals 1 for establishments that did not post AI vacancies in the baseline period, but

posted AI vacancies in the endline period. The dependent variables are the change in the log of the respective establishment-level

outcomes. Occupation groups are 1-digit occupation groups from the NCO04. AI adoption is instrumented by establishment AI

exposure. Each coefficient therefore represents the percentage point impact upon the outcome variable of a one percent rise in the

predicted probability of adopting AI. AI exposure is calculated as the standardized average of occupation AI exposure (from Webb

2020), over the occupations for which the establishment posts vacancies in 2010-12, weighted by the number of vacancies posted per

occupation, as in Acemoglu et al. (2022).
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Table B.17: Second stage: Impact of AI adoption dummy on establishment non-AI wages,
controlling for job profiles

Growth in Non-AI Median Wage Growth in Overall Median Wage

(1) (2) (3) (4) (5) (6)
Adoption of AI -4.147∗∗∗ -4.347∗∗∗ -4.049∗∗∗ -3.997∗∗∗ -4.196∗∗∗ -3.898∗∗∗

(1.191) (1.278) (1.152) (1.144) (1.229) (1.107)

Growth in Experience 0.409∗∗∗ 0.409∗∗∗ 0.405∗∗∗ 0.409∗∗∗ 0.409∗∗∗ 0.405∗∗∗

(0.0132) (0.0138) (0.0133) (0.0132) (0.0136) (0.0132)

Growth in High School share -0.0883 -0.0896 -0.102 -0.0919 -0.0928 -0.105
(0.0724) (0.0740) (0.0716) (0.0705) (0.0720) (0.0697)

Growth in Master’s share 0.222∗∗∗ 0.220∗∗∗ 0.222∗∗∗ 0.221∗∗∗ 0.219∗∗∗ 0.222∗∗∗

(0.0320) (0.0318) (0.0318) (0.0320) (0.0318) (0.0317)

Growth in Doctorate share 2.090∗∗ 2.283∗∗ 2.045∗∗ 2.029∗∗ 2.219∗∗ 1.985∗∗

(0.988) (1.085) (0.968) (0.957) (1.052) (0.937)
Fixed Effects:
– Region ✓ ✓ ✓ ✓ ✓ ✓
– Industry ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓
First Stage F-Stat 45.86 43.58 47.26 46.13 43.73 47.38
Observations 22,064 22,064 22,064 22,071 22,071 22,071

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

independent variable is a dummy, which equals 1 for establishments that did not post AI vacancies in the baseline period, but posted

AI vacancies in the endline period. The dependent variables are the change in the log of the respective establishment-level outcomes.

AI adoption is instrumented by establishment AI exposure. Each coefficient therefore represents the percentage point impact upon

the outcome variable of a one percent rise in the predicted probability of adopting AI. AI exposure is calculated as the standardized

average of occupation AI exposure (from Webb 2020), over the occupations for which the establishment posts vacancies in 2010-12,

weighted by the number of vacancies posted per occupation, as in Acemoglu et al. (2022).
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Figure B.1: Impact of AI adoption on the wage offer distribution in all posts

Notes: This coefficient plot shows the impact of a one percent rise in the predicted probability of adopting AI on wage growth over

time across the distribution of establishment wage offers. Each coefficient is from a regression of type (6) in Appendix Table B.17.

As in Appendix Table B.17, AI adoption is instrumented with AI exposure. In other words, each coefficient represents the impact of

a one percent rise in the predicted probability of adopting AI on wage growth over time for a given percentile of the wage offer

distribution. We report the 1st and 99th percentile of the wage offer distribution and deciles in between the two extremes, alongside

95 percent confidence intervals. Standard errors are clustered at the firm level, and we include region, firm size decile and industry

fixed effects. Since AI posts make up only a small share of all roles in most establishments, the pattern is very similar across the

distributions for all posts and for non-AI posts only.

B.3 Alternative specifications

This section provides the key results repeated for a series of alternative specifications, as discussed

in Section 6, along with additional results for the event-study approach.
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Table B.18: Second stage: Impact of AI adoption on establishment non-AI vacancies, controlling
for baseline share of software engineers

Growth in Non-AI Vacancies Growth in Total Vacancies

(1) (2) (3) (4) (5) (6)
Adoption of AI -9.656∗∗∗ -16.10∗∗∗ -9.582∗∗∗ -9.353∗∗∗ -15.51∗∗∗ -9.293∗∗∗

(2.944) (4.206) (2.865) (2.801) (3.997) (2.725)
Covariates:
Share of Software Engineers ✓ ✓ ✓ ✓ ✓ ✓
Fixed Effects:
– Region ✓ ✓ ✓ ✓ ✓ ✓
– Industry ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓
First Stage F-Stat 32.3 28.77 33.05 33.01 29.4 33.69
Observations 22,244 22,244 22,244 22,251 22,251 22,251

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

independent variable is a dummy, which equals 1 for establishments that did not post AI vacancies in the baseline period, but posted

AI vacancies in the endline period. The dependent variables are the change in the log of the respective establishment-level outcomes.

As an additional control, the baseline share of vacancies for software engineers in each establishment is included. Software engineers

are captured by the NCO04 4-digit occupations 2131 (Computer Systems Designers and Analysts), 2132 (Computer Programmers),

and 2139 (Computer Professionals, n.e.c.). AI adoption is instrumented by establishment AI exposure. Each coefficient therefore

represents the percentage point impact upon the outcome variable of a one percent rise in the predicted probability of adopting AI.

AI exposure is calculated as the standardized average of occupation AI exposure (from Webb 2020), over the occupations for which

the establishment posts vacancies in 2010-12, weighted by the number of vacancies posted per occupation, as in Acemoglu et al.

(2022).
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Table B.19: Second stage: Impact of AI adoption on establishment non-AI wages, controlling
for baseline share of software engineers

Growth in Non-AI Median Wage Growth in Overall Median Wage

(1) (2) (3) (4) (5) (6)
Adoption of AI -6.620∗∗∗ -7.642∗∗∗ -6.482∗∗∗ -6.326∗∗∗ -7.307∗∗∗ -6.186∗∗∗

(1.833) (2.121) (1.776) (1.749) (2.024) (1.695)
Covariates:
Share of Software Engineers ✓ ✓ ✓ ✓ ✓ ✓
Fixed Effects:
– Region ✓ ✓ ✓ ✓ ✓ ✓
– Industry ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓
First Stage F-Stat 33.58 29.9 34.32 34.27 30.52 34.94
Observations 22,064 22,064 22,064 22,071 22,071 22,071

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

independent variable is a dummy, which equals 1 for establishments that did not post AI vacancies in the baseline period, but posted

AI vacancies in the endline period. The dependent variables are the change in the log of the respective establishment-level outcomes.

As an additional control, the baseline share of vacancies for software engineers in each establishment is included. Software engineers

are captured by the NCO04 4-digit occupations 2131 (Computer Systems Designers and Analysts), 2132 (Computer Programmers),

and 2139 (Computer Professionals, n.e.c.). AI adoption is instrumented by establishment AI exposure. Each coefficient therefore

represents the percentage point impact upon the outcome variable of a one percent rise in the predicted probability of adopting AI.

AI exposure is calculated as the standardized average of occupation AI exposure (from Webb 2020), over the occupations for which

the establishment posts vacancies in 2010-12, weighted by the number of vacancies posted per occupation, as in Acemoglu et al.

(2022).

Table B.20: Second stage: Impact of AI adoption on establishment non-AI vacancies, controlling
for baseline share of sales & admin vacancies

Growth in Non-AI Vacancies Growth in Total Vacancies

(1) (2) (3) (4) (5) (6)
Adoption of AI -17.96∗∗ -40.93∗∗ -18.08∗∗∗ -16.82∗∗∗ -36.83∗∗ -16.96∗∗∗

(6.976) (20.67) (6.916) (6.335) (17.49) (6.270)
Fixed Effects:
– Region ✓ ✓ ✓ ✓ ✓ ✓
– Industry ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓
First Stage F-Stat 10.49 4.644 10.69 11.17 5.282 11.35
Observations 22,244 22,244 22,244 22,251 22,251 22,251

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

independent variable is a dummy, which equals 1 for establishments that did not post AI vacancies in the baseline period, but posted

AI vacancies in the endline period. The dependent variables are the change in the log of the respective establishment-level outcomes.

As an additional control, the baseline share of vacancies in each establishment belonging to the broad occupations of either sales or

administration is included. We use the occ1990dd occupation classification (by Autor & Dorn 2013) in defining retail sales and

clerical jobs as sales and administrative. AI adoption is instrumented by establishment AI exposure. Each coefficient therefore

represents the percentage point impact upon the outcome variable of a one percent rise in the predicted probability of adopting AI.

AI exposure is calculated as the standardized average of occupation AI exposure (from Webb 2020), over the occupations for which

the establishment posts vacancies in 2010-12, weighted by the number of vacancies posted per occupation, as in Acemoglu et al.

(2022).
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Table B.21: Second stage: Impact of AI adoption on establishment non-AI wages, controlling
for baseline share of sales & admin vacancies

Growth in Non-AI Median Wage Growth in Overall Median Wage

(1) (2) (3) (4) (5) (6)
Adoption of AI -6.393∗∗ -10.85∗ -6.318∗∗ -6.393∗∗ -10.85∗ -6.318∗∗

(3.005) (6.168) (2.933) (3.005) (6.168) (2.933)
Fixed Effects:
– Region ✓ ✓ ✓ ✓ ✓ ✓
– Industry ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓
First Stage F-Stat 10.48 4.705 10.76 10.48 4.705 10.76
Observations 22,064 22,064 22,064 22,064 22,064 22,064

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

independent variable is a dummy, which equals 1 for establishments that did not post AI vacancies in the baseline period, but posted

AI vacancies in the endline period. The dependent variables are the change in the log of the respective establishment-level outcomes.

As an additional control, the baseline share of vacancies in each establishment belonging to the broad occupations of either sales or

administration is included. We use the occ1990dd occupation classification (by Autor & Dorn 2013) in defining retail sales and

clerical jobs as sales and administrative. AI adoption is instrumented by establishment AI exposure. Each coefficient therefore

represents the percentage point impact upon the outcome variable of a one percent rise in the predicted probability of adopting AI.

AI exposure is calculated as the standardized average of occupation AI exposure (from Webb 2020), over the occupations for which

the establishment posts vacancies in 2010-12, weighted by the number of vacancies posted per occupation, as in Acemoglu et al.

(2022).

Table B.22: Second stage: Impact of AI adoption on establishment non-AI vacancies, 2013-15
to 2017-19

Growth in Non-AI Vacancies Growth in Total Vacancies

(1) (2) (3) (4) (5) (6)
Adoption of AI -6.735∗∗ -10.40∗∗∗ -7.029∗∗ -6.682∗∗ -10.38∗∗∗ -6.989∗∗

(2.878) (3.404) (2.782) (2.916) (3.445) (2.816)
Fixed Effects:
– Region ✓ ✓ ✓ ✓ ✓ ✓
– Industry ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓
First Stage F-Stat 41.13 45.05 44.32 39.45 43.08 42.62
Observations 38,458 38,458 38,458 38,490 38,490 38,490

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

independent variable is a dummy, which equals 1 for establishments that did not post AI vacancies in the 2013-15 period, but posted

AI vacancies in the endline period. The dependent variables are the change in the log of the respective establishment-level outcomes.

AI adoption is instrumented by establishment AI exposure. Each coefficient therefore represents the percentage point impact upon

the outcome variable of a one percent rise in the predicted probability of adopting AI. AI exposure is calculated as the standardized

average of occupation AI exposure (from Webb 2020), over the occupations for which the establishment posts vacancies in 2013-15,

weighted by the number of vacancies posted per occupation, as in Acemoglu et al. (2022).
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Table B.23: Second stage: Impact of AI adoption on establishment non-AI wages, 2013-15 to
2017-19

Growth in Non-AI Median Wage Growth in Overall Median Wage

(1) (2) (3) (4) (5) (6)
Adoption of AI -7.114∗∗∗ -6.920∗∗∗ -6.829∗∗∗ -7.185∗∗∗ -6.966∗∗∗ -6.883∗∗∗

(2.002) (2.015) (1.911) (2.038) (2.045) (1.940)
Fixed Effects:
– Region ✓ ✓ ✓ ✓ ✓ ✓
– Industry ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓
First Stage F-Stat 41.17 45.17 44.28 39.49 43.19 42.57
Observations 38,249 38,249 38,249 38,281 38,281 38,281

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

independent variable is a dummy, which equals 1 for establishments that did not post AI vacancies in the 2013-15 period, but posted

AI vacancies in the endline period. The dependent variables are the change in the log of the respective establishment-level outcomes.

AI adoption is instrumented by establishment AI exposure. Each coefficient therefore represents the percentage point impact upon

the outcome variable of a one percent rise in the predicted probability of adopting AI. AI exposure is calculated as the standardized

average of occupation AI exposure (from Webb 2020), over the occupations for which the establishment posts vacancies in 2013-15,

weighted by the number of vacancies posted per occupation, as in Acemoglu et al. (2022).

Figure B.2: Non-AI vacancies following AI adoption at the district level

Notes: Two way fixed effects on a balanced panel. The outcome variable is the IHS-transformed number of non-AI vacancies by

region and district, respectively. At the region level, propensity scores from a probit regression on lagged total hiring, lagged median

salary growth, firm age, and year dummies for 2013, 2015, 2016, and 2018. At the district level, propensity scores from a probit

regression on lagged median salary, firm age, median salary growth, and year dummies for 2023 and 2013. We use three leads and

lags, leaving out the first lead (t-1) as the base period, and cluster standard errors on region and district, respectively. AI adoption

leads to reduced non-AI vacancies on the region level, but has no effects on the district level.
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Table B.24: Vacancies results for ‘incumbents’ and ‘startups’

Growth in Non-AI Vacancies Growth in Total Vacancies

(1) (2) (3) (4) (5) (6)
Adoption of AI -5.420*** -6.204*** -5.162*** -5.392*** -6.202*** -5.147***
Incumbents (2.065) (2.171) (1.938) (2.087) (2.200) (1.960)
Fixed Effects:
– Region ✓ ✓ ✓ ✓ ✓ ✓
– Industry ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓
First Stage F-Stat 34.59 35.31 38.14 33.72 34.22 37.11
Observations 17,341 17,341 17,341 17,348 17,348 17,348

Adoption of AI -11.20 -21.30* -12.30 -11.17 -21.26* -12.29
Start-ups (8.499) (11.96) (8.430) (8.689) (12.15) (8.605)
Fixed Effects:
– Region ✓ ✓ ✓ ✓ ✓ ✓
– Industry ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓
First Stage F-Stat 9.133 9.889 9.725 8.54 9.245 9.138
Observations 21,060 21,060 21,060 21,085 21,085 21,085

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

independent variable is a dummy, which equals 1 for establishments that did not post AI vacancies in the baseline period, but posted

AI vacancies in the endline period. The dependent variables are the change in the log of the respective establishment-level outcomes.

In order to distinguish between start-ups and incumbents, we look at the shorter long difference between 2013-15 and 2017-19. A

start-up is an establishment that did not post in the baseline, 2010-12, and only started posting in 2013-15. An incumbent posted

vacancies already in the baseline, 2010-12. AI adoption is instrumented by establishment AI exposure. Each coefficient therefore

represents the percentage point impact upon the outcome variable of a one percent rise in the predicted probability of adopting AI.

AI exposure is calculated as the standardized average of occupation AI exposure (from Webb 2020), over the occupations for which

the establishment posts vacancies in 2013-15, weighted by the number of vacancies posted per occupation, as in Acemoglu et al.

(2022).
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Table B.25: Wage results for ‘incumbents’ and ‘startups’

Growth in Non-AI Median Wage Growth in Overall Median Wage

(1) (2) (3) (4) (5) (6)
Adoption of AI -3.853*** -3.596*** -3.650*** -3.913*** -3.655*** -3.703***
Incumbent (1.250) (1.189) (1.163) (1.267) (1.207) (1.178)
Fixed Effects:
– Region ✓ ✓ ✓ ✓ ✓ ✓
– Industry ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓
First Stage F-Stat 34.71 35.28 38.23 33.84 34.19 37.19
Observations 17,259 17,259 17,259 17,266 17,266 17,266

Adoption of AI -16.27** -17.74** -15.81** -16.48** -17.74** -15.97**
Start-ups (7.103) (7.778) (6.760) (7.347) (7.949) (6.966)
Fixed Effects:
– Region ✓ ✓ ✓ ✓ ✓ ✓
– Industry ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓
First Stage F-Stat 9.135 10.08 9.757 8.538 9.432 9.161
Observations 20,934 20,934 20,934 20,959 20,959 20,959

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

independent variable is a dummy, which equals 1 for establishments that did not post AI vacancies in the baseline period, but posted

AI vacancies in the endline period. The dependent variables are the change in the log of the respective establishment-level outcomes.

In order to distinguish between start-ups and incumbents, we look at the shorter long difference between 2013-15 and 2017-19. A

start-up is an establishment that did not post in the baseline, 2010-12, and only started posting in 2013-15. An incumbent posted

vacancies already in the baseline, 2010-12. AI adoption is instrumented by establishment AI exposure. Each coefficient therefore

represents the percentage point impact upon the outcome variable of a one percent rise in the predicted probability of adopting AI.

AI exposure is calculated as the standardized average of occupation AI exposure (from Webb 2020), over the occupations for which

the establishment posts vacancies in 2013-15, weighted by the number of vacancies posted per occupation, as in Acemoglu et al.

(2022).
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Table B.26: Second stage: Impact of AI adoption on establishment non-AI vacancies, intensive
margin of AI demand

Growth in Non-AI Vacancies Growth in Total Vacancies

(1) (2) (3) (4) (5) (6)
Growth of AI Vacancies -4.611∗∗∗ -7.704∗∗∗ -4.632∗∗∗ -4.555∗∗∗ -7.564∗∗∗ -4.584∗∗∗

(1.557) (2.187) (1.517) (1.513) (2.115) (1.475)
Fixed Effects:
– Region ✓ ✓ ✓ ✓ ✓ ✓
– Industry ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓
First Stage F-Stat 22.76 23.26 23.74 23.9 24.34 24.9
Observations 22,244 22,244 22,244 22,251 22,251 22,251

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

independent variable is the growth in establishment AI vacancies between 2010-12 and 2017-19, approximated by the change in the

logarithm plus 1. The dependent variables are the change in the log of the respective establishment-level outcomes. AI vacancies

growth is instrumented by establishment AI exposure. AI exposure is calculated as the standardized average of occupation AI

exposure (from Webb 2020), over the occupations for which the establishment posts vacancies in 2010-12, weighted by the number

of vacancies posted per occupation, as in Acemoglu et al. (2022).

Table B.27: Second stage: Impact of AI dummy on establishment non-AI wages, intensive
margin of AI demand

Growth in Non-AI Median Wage Growth in Overall Median Wage

(1) (2) (3) (4) (5) (6)
Growth of AI Vacancies -3.302∗∗∗ -3.803∗∗∗ -3.174∗∗∗ -3.218∗∗∗ -3.703∗∗∗ -3.090∗∗∗

(0.997) (1.119) (0.946) (0.962) (1.079) (0.912)
Fixed Effects:
– Region ✓ ✓ ✓ ✓ ✓ ✓
– Industry ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓
First Stage F-Stat 23.22 23.71 24.18 24.37 24.8 25.36
Observations 22,064 22,064 22,064 22,071 22,071 22,071

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

independent variable is the growth in establishment AI vacancies between 2010-12 and 2017-19, approximated by the change in the

logarithm plus 1. The dependent variables are the change in the log of the respective establishment-level outcomes. AI vacancies

growth is instrumented by establishment AI exposure. AI exposure is calculated as the standardized average of occupation AI

exposure (from Webb 2020), over the occupations for which the establishment posts vacancies in 2010-12, weighted by the number

of vacancies posted per occupation, as in Acemoglu et al. (2022).
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Table B.28: Second stage: Impact of AI adoption on establishment non-AI vacancies, IHS of AI
vacancies

Growth in Non-AI Vacancies Growth in Total Vacancies

(1) (2) (3) (4) (5) (6)
Growth in AI Vacancies -3.777∗∗∗ -6.285∗∗∗ -3.794∗∗∗ -3.727∗∗∗ -6.165∗∗∗ -3.751∗∗∗

(1.252) (1.745) (1.219) (1.215) (1.686) (1.184)
Fixed Effects:
– Region ✓ ✓ ✓ ✓ ✓ ✓
– Industry ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓
First Stage F-Stat 24.79 25.12 25.87 26.06 26.31 27.17
Observations 22,244 22,244 22,244 22,251 22,251 22,251

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

independent variable is the growth in establishment AI vacancies between 2010-12 and 2017-19, approximated by the change in the

log. The dependent variables are the change in the inverse hyperbolic sine of the respective establishment-level outcomes. Each

coefficient therefore represents the percentage point impact on the outcome variable of a one IHS unit increase in establishment AI

demand. The latter is instrumented by establishment AI exposure. This is calculated as the standardized average of occupation AI

exposure (from Webb 2020), over the occupations for which the establishment posts vacancies in 2010-12, weighted by the number

of vacancies posted per occupation, as in Acemoglu et al. (2022).

Table B.29: Second stage: Impact of AI adoption on establishment non-AI vacancies, IHS of AI
vacancies

Growth in Non-AI Median Wage Growth in Overall Median Wage

(1) (2) (3) (4) (5) (6)
Growth in AI Vacancies -2.703∗∗∗ -3.101∗∗∗ -2.599∗∗∗ -2.632∗∗∗ -3.017∗∗∗ -2.527∗∗∗

(0.799) (0.895) (0.758) (0.770) (0.862) (0.730)
Fixed Effects:
– Region ✓ ✓ ✓ ✓ ✓ ✓
– Industry ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓
First Stage F-Stat 25.32 25.64 26.39 26.61 26.84 27.71
Observations 22,064 22,064 22,064 22,071 22,071 22,071

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

independent variable is the growth in establishment AI vacancies between 2010-12 and 2017-19, approximated by the change in the

log. The dependent variables are the change in the inverse hyperbolic sine of the respective establishment-level outcomes. Each

coefficient therefore represents the percentage point impact on the outcome variable of a one IHS unit increase in establishment AI

demand. The latter is instrumented by establishment AI exposure. This is calculated as the standardized average of occupation AI

exposure (from Webb 2020), over the occupations for which the establishment posts vacancies in 2010-12, weighted by the number

of vacancies posted per occupation, as in Acemoglu et al. (2022).
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Table B.30: Second stage: Impact of AI adoption on establishment non-AI vacancies, weighted

Growth in Non-AI Vacancies Growth in Total Vacancies

(1) (2) (3) (4) (5) (6)
Adoption of AI -2.907∗∗ -4.142∗∗∗ -2.894∗∗ -2.846∗∗ -4.077∗∗∗ -2.839∗∗

(1.298) (1.437) (1.264) (1.279) (1.419) (1.246)
Fixed Effects:
– Region ✓ ✓ ✓ ✓ ✓ ✓
– Industry ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓
First Stage F-Stat 49.54 48.42 51.54 50.7 49.31 52.73
Observations 22,244 22,244 22,244 22,251 22,251 22,251

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. Establishments

are weighted by baseline number of posts, with the top 5% winsorized. The independent variable is a dummy, which equals 1 for

establishments that did not post AI vacancies in the baseline period, but posted AI vacancies in the endline period. The dependent

variables are the change in the log of the respective establishment-level outcomes. AI adoption is instrumented by establishment AI

exposure. Each coefficient therefore represents the percentage point impact upon the outcome variable of a one percent rise in the

predicted probability of adopting AI. AI exposure is calculated as the standardized average of occupation AI exposure (from Webb

2020), over the occupations for which the establishment posts vacancies in 2010-12, weighted by the number of vacancies posted per

occupation, as in Acemoglu et al. (2022).

Table B.31: Second stage: Impact of AI adoption on establishment non-AI wages, weighted

Growth in Non-AI Median Wage Growth in Overall Median Wage

(1) (2) (3) (4) (5) (6)
Adoption of AI -1.135∗∗ -1.382∗∗∗ -1.088∗∗ -1.111∗∗ -1.364∗∗∗ -1.064∗∗

(0.491) (0.481) (0.474) (0.484) (0.475) (0.466)
Fixed Effects:
– Region ✓ ✓ ✓ ✓ ✓ ✓
– Industry ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓
First Stage F-Stat 49.58 48.36 51.54 50.74 49.26 52.74
Observations 22,064 22,064 22,064 22,071 22,071 22,071

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. Establishments

are weighted by baseline number of posts, with the top 5% winsorized. The independent variable is a dummy, which equals 1 for

establishments that did not post AI vacancies in the baseline period, but posted AI vacancies in the endline period. The dependent

variables are the change in the log of the respective establishment-level outcomes. AI adoption is instrumented by establishment AI

exposure. Each coefficient therefore represents the percentage point impact upon the outcome variable of a one percent rise in the

predicted probability of adopting AI. AI exposure is calculated as the standardized average of occupation AI exposure (from Webb

2020), over the occupations for which the establishment posts vacancies in 2010-12, weighted by the number of vacancies posted per

occupation, as in Acemoglu et al. (2022).
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Table B.32: Second stage: Impact of AI adoption on establishment non-AI vacancies, two-step
estimation method

Growth in Non-AI Vacancies Growth in Total Vacancies

(1) (2) (3) (4) (5) (6)
Adoption of AI -2.567∗∗∗ -5.112∗∗∗ -3.072∗∗∗ -2.728∗∗∗ -5.108∗∗∗ -3.258∗∗∗

(0.831) (0.929) (0.830) (0.790) (0.890) (0.801)
Fixed Effects:
– Region ✓ ✓ ✓ ✓ ✓ ✓
– Industry ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓
First Stage F-Stat
Observations 22,392 22,392 22,392 22,399 22,399 22,399

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. The independent variable is a dummy, which equals 1 for

establishments that did not post AI vacancies in the baseline period, but posted AI vacancies in the endline period. The dependent

variables are the change in the log of the respective establishment-level outcomes. AI adoption is instrumented by establishment AI

exposure. Each coefficient therefore represents the percentage point impact upon the outcome variable of a one percent rise in the

predicted probability of adopting AI. AI exposure is calculated as the standardized average of occupation AI exposure (from Webb

2020), over the occupations for which the establishment posts vacancies in 2010-12, weighted by the number of vacancies posted per

occupation, as in Acemoglu et al. (2022). We use the two-step estimation method implemented using etregress in Stata.

Table B.33: Second stage: Impact of AI adoption on establishment non-AI wages, two-step
estimation method

Growth in Non-AI Median Wage Growth in Overall Median Wage

(1) (2) (3) (4) (5) (6)
Adoption of AI -3.381∗∗∗ -3.540∗∗∗ -3.363∗∗∗ -3.211∗∗∗ -3.353∗∗∗ -3.183∗∗∗

(0.520) (0.523) (0.518) (0.489) (0.492) (0.487)
Fixed Effects:
– Region ✓ ✓ ✓ ✓ ✓ ✓
– Industry ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓
First Stage F-Stat
Observations 22,214 22,214 22,214 22,221 22,221 22,221

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. The independent variable is a dummy, which equals 1 for

establishments that did not post AI vacancies in the baseline period, but posted AI vacancies in the endline period. The dependent

variables are the change in the log of the respective establishment-level outcomes. AI adoption is instrumented by establishment AI

exposure. Each coefficient therefore represents the percentage point impact upon the outcome variable of a one percent rise in the

predicted probability of adopting AI. AI exposure is calculated as the standardized average of occupation AI exposure (from Webb

2020), over the occupations for which the establishment posts vacancies in 2010-12, weighted by the number of vacancies posted per

occupation, as in Acemoglu et al. (2022). We use the two-step estimation method implemented using etregress in Stata.
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Table B.34: Second stage: Impact of AI adoption on establishment non-AI mean wages

Growth in Non-AI Mean Wage Growth in Overall Mean Wage

(1) (2) (3) (4) (5) (6)
Adoption of AI -5.703∗∗∗ -6.626∗∗∗ -5.530∗∗∗ -5.450∗∗∗ -6.344∗∗∗ -5.281∗∗∗

(1.403) (1.580) (1.345) (1.343) (1.516) (1.289)
Fixed Effects:
– Region ✓ ✓ ✓ ✓ ✓ ✓
– Industry ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓
First Stage F-Stat 45.14 42.91 46.86 45.46 43.12 47.02
Observations 22,064 22,064 22,064 22,071 22,071 22,071

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

independent variable is a dummy, which equals 1 for establishments that did not post AI vacancies in the baseline period, but posted

AI vacancies in the endline period. The dependent variables are the change in the log of the respective establishment-level outcomes.

AI adoption is instrumented by establishment AI exposure. Each coefficient therefore represents the percentage point impact upon

the outcome variable of a one percent rise in the predicted probability of adopting AI. AI exposure is calculated as the standardized

average of occupation AI exposure (from Webb 2020), over the occupations for which the establishment posts vacancies in 2010-12,

weighted by the number of vacancies posted per occupation, as in Acemoglu et al. (2022).

Table B.35: OLS: Regression of AI adoption on establishment non-AI vacancies

Growth in Non-AI Vacancies Growth in Total Vacancies

(1) (2) (3) (4) (5) (6)
Adoption of AI 1.021∗∗∗ 1.253∗∗∗ 1.160∗∗∗ 1.053∗∗∗ 1.283∗∗∗ 1.189∗∗∗

(0.0882) (0.0852) (0.0856) (0.0874) (0.0842) (0.0848)
Fixed Effects:
– Region ✓ ✓ ✓ ✓ ✓ ✓
– Industry ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓
First Stage F-Stat
Observations 24,312 24,312 24,312 24,322 24,322 24,322

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

independent variable is a dummy, which equals 1 for establishments that did not post AI vacancies in the baseline period, but posted

AI vacancies in the endline period. The dependent variables are the change in the log of the respective establishment-level outcomes.
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Table B.36: Probit regression on establishment AI adoption

AI adoption
Firm Size Decile -0.0675∗∗∗

(0.0121)
Firm Age 0.0367∗∗∗

(0.00647)
Total Posts 0.259∗∗∗

(0.0153)
Postgraduate Share 9.895∗∗∗

(3.067)
Median Salary -10.75∗

(5.775)
Median Experience -0.556∗∗∗

(0.0624)
Growth in Median Salary -0.100∗∗∗

(0.0285)
Growth in Median Experience 0.457∗∗∗

(0.141)
90th Percentile of Salary 0.118∗∗

(0.0589)
90th Percentile of Experience -0.308∗∗∗

(0.0999)
Growth of 90th Percentile of Salary 0.0591

(0.0394)
Growth of 90th Percentile of Experience 0.0819

(0.0741)
99th Percentile of Salary 0.429∗∗∗

(0.0497)
99th Percentile of Experience -2.024∗∗∗

(0.626)
Growth of 99th Percentile of Salary -0.188∗∗∗

(0.0330)
Growth of 99th Percentile of Experience -0.159∗∗

(0.0639)
Salary Dispersion -0.00000106∗∗∗

(0.000000231)
Experience Dispersion 0.170∗∗∗

(0.0493)
N 111044

Notes: Results of a probit regression to compute propensity scores when matching AI adopters to never adopters as described in the

short-term results section. All independent variables are lagged by one year. Included but not displayed is a set of year dummies for

all years except 2019, and the following interactions: Square of Postgraduate Share, Square and Cube of Median Salary, Square

of Median Salary Growth, Square of Growth of 90th Percentile of Salary, Square and Cube of Salary Dispersion, Growth of 99th

Percentile of Salary x Salary Dispersion, Median Salary x 99th Percentile of Experience, Growth of Median Experience x 99th

Percentile of Experience, Growth of Median Experience x 99th Percentile of Experience x Median Salary. Standard errors clustered

at the establishment-level in parentheses. * p <0.10, ** p <0.05, *** p <0.01.

38



B.4 Alternative exposure measures

For our main specifications, we use the AI exposure measure proposed by Webb (2020), which

estimates the overlap between occupations’ constituent tasks and the capabilities described in

AI patents. The advantage of this approach is that it is relatively objective – relying on no ‘ad

hoc’ expert judgements of the capabilities of particular technologies – and flexible, allowing

Webb to validate it against previous developments in software and robots. Nonetheless, we also

explore alternative AI exposure measures that have been proposed in the literature.

We first consider the AI exposure measure proposed by Felten et al. (2018). Their AI

Occupational Impact measure draws on data from the AI Progress Measurement project from

the Electronic Frontier Foundation. The data identify nine application areas in which AI has

made progress since 2010. Felten et al. (2018) then crowdsource assessments on the applicability

of these applications to 52 O*NET ability scales using Amazon MTurk. Their measure assigns

an AI exposure score to each O*NET occupation as the weighed sum of the 52 O*NET ability

assessments, where the weights are equal to the O*NET-reported prevalence and importance of

each ability within each occupation. We map the Felten et al. (2018) measure to Indian NCO

using a publicly available crosswalk (see Appendix A) and repeat our main specifications. The

results are shown in Tables B.37 to B.39. While we do not observe any significant impacts on

the growth of non-AI vacancies for the full sample, we do find similar negative effects on the

share of professional and managerial vacancies and on median wage offers.

We also consider the Suitability for Machine Learning (SML) methodology from Brynjolfsson

et al. (2018), which uses surveys to score O*NET direct work activities against a rubric of

suitability for machine learning (e.g., inputs and outputs are machine-readable, feedback is

immediate, task is principally concerned with matching or prediction). We use an India-specific

version of the SML index created by Mani et al. (2020), who interviewed a sample of Indian

employees using the SML rubric and mapped a SML score onto every occupation in the 2004

NCO at the four-digit level. However, unlike the Webb or Felten et al. measures, we find that

the SML exposure measure fails to positively predict establishment AI adoption (Table B.40).

This may reflect that the SML measure is more forward-looking in its predictions. The result

that the SML index does not predict AI demand was also found in Acemoglu et al. (2022),

suggesting that the limited predictive power is not limited to India only.
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Table B.37: Second stage: Impact of AI adoption on establishment non-AI vacancies – Felten et
al. exposure measure

Growth in Non-AI Vacancies Growth in Total Vacancies

(1) (2) (3) (4) (5) (6)
Adoption of AI 0.784 2.315 1.508 0.966 2.496 1.750

(2.541) (1.682) (2.569) (2.669) (1.739) (2.709)
Fixed Effects:
– Region ✓ ✓ ✓ ✓ ✓ ✓
– Industry ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓
First Stage F-Stat 23.91 42.65 22.6 19.53 36.89 18.34
Observations 22,244 22,244 22,244 22,251 22,251 22,251

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

independent variable is a dummy, which equals 1 for establishments that did not post AI vacancies in the baseline period, but posted

AI vacancies in the endline period. The dependent variables are the change in the log of the respective establishment-level outcomes.

AI adoption is instrumented by establishment AI exposure. Each coefficient therefore represents the percentage point impact upon

the outcome variable of a one percent rise in the predicted probability of adopting AI. AI exposure is calculated as the standardized

average of occupation AI exposure (from Felten et al. 2018), over the occupations for which the establishment posts vacancies in

2010-12, weighted by the number of vacancies posted per occupation, as in Acemoglu et al. (2022).

Table B.38: Second stage: Impact of AI adoption on establishment non-AI vacancy shares, by
occupation group – Felten et al. exposure measure

Growth in Non-AI Vacancies

Personal, Clerks Associate Professionals Managers
Sales & Security Professionals

Adoption of AI 7.981∗∗∗ -0.919∗∗∗ 7.608∗∗∗ -10.31∗∗∗ -4.039∗∗∗

(1.809) (0.289) (1.780) (2.261) (1.002)
Fixed Effects:
– Region ✓ ✓ ✓ ✓ ✓
– Industry ✓ ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓ ✓
First Stage F-Stat 22.6 22.6 22.6 22.6 22.6
Observations 22,244 22,244 22,244 22,244 22,244

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

independent variable is a dummy, which equals 1 for establishments that did not post AI vacancies in the baseline period, but posted

AI vacancies in the endline period. The dependent variables are the change in occupation shares. Occupation groups are 1-digit

occupations from the NCO04. AI adoption is instrumented by establishment AI exposure. Each coefficient therefore represents the

impact upon the outcome variable of a one percent rise in the predicted probability of adopting AI. AI exposure is calculated as the

standardized average of occupation AI exposure (from Felten et al. 2018), over the occupations for which the establishment posts

vacancies in 2010-12, weighted by the number of vacancies posted per occupation, as in Acemoglu et al. (2022).
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Table B.39: Second stage: Impact of AI adoption on establishment non-AI wages – Felten et al.
exposure measure

Growth in Non-AI Median Wage Growth in Overall Median Wage

(1) (2) (3) (4) (5) (6)
Adoption of AI -3.300∗∗ -2.421∗∗ -3.480∗∗ -3.551∗∗ -2.534∗∗ -3.753∗∗

(1.507) (0.958) (1.560) (1.662) (1.020) (1.729)
Fixed Effects:
– Region ✓ ✓ ✓ ✓ ✓ ✓
– Industry ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓
First Stage F-Stat 23.71 42.77 22.52 19.35 36.99 18.27
Observations 22,064 22,064 22,064 22,071 22,071 22,071

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

independent variable is a dummy, which equals 1 for establishments that did not post AI vacancies in the baseline period, but posted

AI vacancies in the endline period. The dependent variables are the change in the log of the respective establishment-level outcomes.

AI adoption is instrumented by establishment AI exposure. Each coefficient therefore represents the percentage point impact upon

the outcome variable of a one percent rise in the predicted probability of adopting AI. AI exposure is calculated as the standardized

average of occupation AI exposure (from Felten et al. 2018), over the occupations for which the establishment posts vacancies in

2010-12, weighted by the number of vacancies posted per occupation, as in Acemoglu et al. (2022).

Table B.40: First stage: Impact of AI exposure on establishment AI adoption – alternative
exposure measures

Adoption of AI

(1) (2) (3) (4) (5) (6)
AI Exposure 0.00704∗∗∗ 0.0103∗∗∗ 0.00679∗∗∗ -0.00509∗∗∗ -0.00922∗∗∗ -0.00581∗∗∗

(0.00159) (0.00170) (0.00159) (0.00144) (0.00147) (0.00147)
Exposure Measure Felten et al. Felten et al. Felten et al. SML SML SML
Fixed Effects:
– Region ✓ ✓ ✓ ✓ ✓ ✓
– Firm Decile ✓ ✓ ✓ ✓
– Industry ✓ ✓ ✓ ✓
R2 .0536 .0439 .0607 .0531 .0433 .0604
Observations 22,251 22,251 22,251 22,251 22,251 22,251

Notes: Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01. Standard errors clustered at the firm level. The

dependent variable is a dummy, which equals 1 for establishments that did not post AI vacancies in the baseline period, but posted

AI vacancies in the endline period. The independent variable is establishment AI exposure, calculated as the standardized average of

occupation AI exposure (from either Felten et al. 2018, or Mani et al. 2020 building on Brynjolfsson & Mitchell 2017), over the

occupations for which the establishment posts vacancies in 2010-12, weighted by the number of vacancies posted per occupation, as

in Acemoglu et al. (2022). Each coefficient therefore represents the impact on the probability of adopting AI of a one-standard

deviation rise in AI exposure according to a linear probability model.
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