The Crypto Cycle and US Monetary Policy

Natasha Che¹, Alexander Copestake¹, Davide Furceri¹, Tammaro Terracciano²
November 29, 2022

¹International Monetary Fund
²University of Geneva & Harvard University
Motivation

• Different crypto assets claim a variety of value propositions
  ⇒ E.g. sound money, more efficient transactions, censorship-resistant computing or property rights

• Yet crypto asset prices tend to move together, and increasingly in parallel with equities
  ⇒ Common crypto booms and ‘winters’
  ⇒ Bitcoin increasingly correlated with S&P500 (Adrian, Iyer & Qureshi 2022)

• This raises several questions:
Motivation

- Different crypto assets claim a variety of value propositions
  - E.g. sound money, more efficient transactions, censorship-resistant computing or property rights

- Yet crypto asset prices tend to move together, and increasingly in parallel with equities
  - Common crypto booms and ‘winters’
  - Bitcoin increasingly correlated with S&P500 (Adrian, Iyer & Qureshi 2022)

- This raises several questions:
Motivation

• Different crypto assets claim a variety of value propositions
  ⇒ E.g. sound money, more efficient transactions, censorship-resistant computing or property rights

• Yet crypto asset prices tend to move together, and increasingly in parallel with equities
  ⇒ Common crypto booms and ‘winters’
  ⇒ Bitcoin increasingly correlated with S&P500 (Adrian, Iyer & Qureshi 2022)

• This raises several questions:
Overview of the paper

1. To what extent is there a common cycle across crypto assets?

2. How does this relate to the Global Financial Cycle? (Rey 2013)

3. Is it also influenced by US monetary policy? (Miranda-Agrippino & Rey 2020)

4. What does this imply for potential spillovers across asset classes? (Iyer 2022)
Overview of the paper

1. To what extent is there a common cycle across crypto assets?

2. How does this relate to the Global Financial Cycle? (Rey 2013)

3. Is it also influenced by US monetary policy? (Miranda-Agrippino & Rey 2020)

4. What does this imply for potential spillovers across asset classes? (Iyer 2022)
Overview of the paper

1. To what extent is there a common cycle across crypto assets?

2. How does this relate to the Global Financial Cycle? (Rey 2013)

3. Is it also influenced by US monetary policy? (Miranda-Agrippino & Rey 2020)

4. What does this imply for potential spillovers across asset classes? (Iyer 2022)
Overview of the paper

1. To what extent is there a *common cycle* across crypto assets?

2. How does this relate to the *Global Financial Cycle*? (Rey 2013)

3. Is it also influenced by *US monetary policy*? (Miranda-Agrippino & Rey 2020)

4. What does this imply for potential *spillovers* across asset classes? (Iyer 2022)
Overview of the paper

1. To what extent is there a common cycle across crypto assets?
   ⇒ Dynamic factor model: single Crypto Factor explains 80% of price variation.

2. How does this relate to the Global Financial Cycle? (Rey 2013)

3. Is it also influenced by US monetary policy? (Miranda-Agrippino & Rey 2020)

4. What does this imply for potential spillovers across asset classes? (Iyer 2022)
Overview of the paper

1. To what extent is there a common cycle across crypto assets?  
   ⇒ Dynamic factor model: single Crypto Factor explains 80% of price variation.

2. How does this relate to the Global Financial Cycle? (Rey 2013)  
   ⇒ CF & GFC increasingly correlated, coinciding with entry of ‘TradFi’ institutions.

3. Is it also influenced by US monetary policy? (Miranda-Agrippino & Rey 2020)

4. What does this imply for potential spillovers across asset classes? (Iyer 2022)
Overview of the paper

1. To what extent is there a common cycle across crypto assets?  
   ⇒ Dynamic factor model: single Crypto Factor explains 80% of price variation.

2. How does this relate to the Global Financial Cycle?  
   (Rey 2013)  
   ⇒ CF & GFC increasingly correlated, coinciding with entry of ‘TradFi’ institutions.

3. Is it also influenced by US monetary policy?  
   (Miranda-Agrippino & Rey 2020)  
   ⇒ VARs: Tightening reduces CF, consistent with the increased cost of leverage reducing the risk appetite of the marginal investor.

4. What does this imply for potential spillovers across asset classes?  
   (Iyer 2022)
Overview of the paper

1. To what extent is there a common cycle across crypto assets?
   ⇒ Dynamic factor model: single Crypto Factor explains 80% of price variation.

2. How does this relate to the Global Financial Cycle? (Rey 2013)
   ⇒ CF & GFC increasingly correlated, coinciding with entry of ‘TradFi’ institutions.

3. Is it also influenced by US monetary policy? (Miranda-Agrippino & Rey 2020)
   ⇒ VARs: Tightening reduces CF, consistent with the increased cost of leverage reducing the risk appetite of the marginal investor.

4. What does this imply for potential spillovers across asset classes? (Iyer 2022)
   ⇒ Model (WIP): institutional adoption raises potential crypto → equities spillovers.
Overview of the paper

1. To what extent is there a **common cycle across crypto assets**?
   ⇒ Dynamic factor model: single Crypto Factor explains 80% of price variation.

2. How does this relate to the **Global Financial Cycle**? (Rey 2013)
   ⇒ CF & GFC increasingly correlated, coinciding with entry of ‘TradFi’ institutions.

3. Is it also influenced by **US monetary policy**? (Miranda-Agrippino & Rey 2020)
   ⇒ VARs: Tightening reduces CF, consistent with the increased cost of leverage reducing the risk appetite of the marginal investor.

4. What does this imply for potential **spillovers across asset classes**? (Iyer 2022)
   ⇒ Model (WIP): institutional adoption raises potential crypto → equities spillovers.

* Note: aggregate market not individual prices; pre-FTX (for now).
  ⇒ Add in crypto assets

• Value propositions and other drivers of specific crypto asset prices (Schilling & Uhlig 2019, Makarov and Schoar 2020, Scailliet et al. 2020, Cong et al. 2021, Liu et al. 2022)
  ⇒ Examine common movement in whole asset class

• Composition and motivation of crypto investors, including increasing institutional participation (Auer & Tercero-Lucas 2021, Makarov and Schoar 2021, Hackethal et al. 2021, Auer et al. 2022, Didisheim & Somoza 2022)
  ⇒ Use to explain co-movement between crypto and equities + potential spillovers
The Crypto Factor Comparing Cycles US Monetary Policy Model (WIP) Conclusions

Literature

  ⇒ Add in crypto assets

- Value propositions and other drivers of specific crypto asset prices (Schilling & Uhlig 2019, Makarov and Schoar 2020, Scaillet et al. 2020, Cong et al. 2021, Liu et al. 2022)
  ⇒ Examine common movement in whole asset class

- Composition and motivation of crypto investors, including increasing institutional participation (Auer & Tercero-Lucas 2021, Makarov and Schoar 2021, Hackethal et al. 2021, Auer et al. 2022, Didisheim & Somoza 2022)
  ⇒ Use to explain co-movement between crypto and equities + potential spillovers

⇒ Add in crypto assets

• Value propositions and other drivers of specific crypto asset prices (Schilling & Uhlig 2019, Makarov and Schoar 2020, Scaillet et al. 2020, Cong et al. 2021, Liu et al. 2022)

⇒ Examine common movement in whole asset class

• Composition and motivation of crypto investors, including increasing institutional participation (Auer & Tercero-Lucas 2021, Makarov and Schoar 2021, Hackethal et al. 2021, Auer et al. 2022, Didisheim & Somoza 2022)

⇒ Use to explain co-movement between crypto and equities + potential spillovers
Literature

  ⇒ Add in crypto assets

- Value propositions and other drivers of specific crypto asset prices (Schilling & Uhlig 2019, Makarov and Schoar 2020, Scaillet et al. 2020, Cong et al. 2021, Liu et al. 2022)
  ⇒ Examine common movement in whole asset class

- Composition and motivation of crypto investors, including increasing institutional participation (Auer & Tercero-Lucas 2021, Makarov and Schoar 2021, Hackethal et al. 2021, Auer et al. 2022, Didisheim & Somoza 2022)
  ⇒ Use to explain co-movement between crypto and equities + potential spillovers
Literature

  ⇒ Add in crypto assets

- Value propositions and other drivers of specific crypto asset prices (Schilling & Uhlig 2019, Makarov and Schoar 2020, Scaillet et al. 2020, Cong et al. 2021, Liu et al. 2022)
  ⇒ Examine common movement in whole asset class

- Composition and motivation of crypto investors, including increasing institutional participation (Auer & Tercero-Lucas 2021, Makarov and Schoar 2021, Hackethal et al. 2021, Auer et al. 2022, Didisheim & Somoza 2022)
  ⇒ Use to explain co-movement between crypto and equities + potential spillovers
Literature

  ⇒ Add in crypto assets

- Value propositions and other drivers of specific crypto asset prices (Schilling & Uhlig 2019, Makarov and Schoar 2020, Scaillet et al. 2020, Cong et al. 2021, Liu et al. 2022)
  ⇒ Examine common movement in whole asset class

- Composition and motivation of crypto investors, including increasing institutional participation (Auer & Tercero-Lucas 2021, Makarov and Schoar 2021, Hackethal et al. 2021, Auer et al. 2022, Didisheim & Somoza 2022)
  ⇒ Use to explain co-movement between crypto and equities + potential spillovers
Stylized fact: High degree of correlation across crypto assets
Stylized fact: High degree of correlation across crypto assets

<table>
<thead>
<tr>
<th></th>
<th>BTC</th>
<th>ETH</th>
<th>BNB</th>
<th>XRP</th>
<th>ADA</th>
<th>SOL</th>
<th>DOGE</th>
<th>DOT</th>
<th>TRX</th>
<th>SHIB</th>
<th>LEO</th>
<th>AVAX</th>
<th>MATIC</th>
<th>UNI</th>
<th>LTC</th>
<th>FTT</th>
<th>LINK</th>
<th>XLM</th>
<th>CRD</th>
<th>NEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>BTC</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>ETH</td>
<td>93%</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>BNB</td>
<td>92%</td>
<td>97%</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>XRP</td>
<td>91%</td>
<td>93%</td>
<td>94%</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>ADA</td>
<td>95%</td>
<td>92%</td>
<td>95%</td>
<td>94%</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>SOL</td>
<td>92%</td>
<td>93%</td>
<td>91%</td>
<td>95%</td>
<td>72%</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>DOGE</td>
<td>75%</td>
<td>80%</td>
<td>88%</td>
<td>90%</td>
<td>80%</td>
<td>55%</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>DOT</td>
<td>94%</td>
<td>77%</td>
<td>77%</td>
<td>80%</td>
<td>80%</td>
<td>91%</td>
<td>62%</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>TRX</td>
<td>76%</td>
<td>81%</td>
<td>78%</td>
<td>81%</td>
<td>65%</td>
<td>73%</td>
<td>79%</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>SHIB</td>
<td>68%</td>
<td>72%</td>
<td>76%</td>
<td>82%</td>
<td>81%</td>
<td>53%</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>LEO</td>
<td>61%</td>
<td>73%</td>
<td>74%</td>
<td>54%</td>
<td>54%</td>
<td>56%</td>
<td>61%</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>AVAX</td>
<td>59%</td>
<td>81%</td>
<td>74%</td>
<td>47%</td>
<td>47%</td>
<td>87%</td>
<td>38%</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>MATIC</td>
<td>63%</td>
<td>60%</td>
<td>77%</td>
<td>53%</td>
<td>76%</td>
<td>82%</td>
<td>76%</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>UNI</td>
<td>50%</td>
<td>56%</td>
<td>63%</td>
<td>76%</td>
<td>77%</td>
<td>25%</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>LTC</td>
<td>74%</td>
<td>70%</td>
<td>65%</td>
<td>54%</td>
<td>73%</td>
<td>43%</td>
<td>67%</td>
<td>82%</td>
<td></td>
</tr>
<tr>
<td>FTT</td>
<td>94%</td>
<td>96%</td>
<td>96%</td>
<td>83%</td>
<td>94%</td>
<td>79%</td>
<td>85%</td>
<td>92%</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>LINK</td>
<td>82%</td>
<td>82%</td>
<td>83%</td>
<td>53%</td>
<td>83%</td>
<td>42%</td>
<td>82%</td>
<td>69%</td>
<td>93%</td>
<td>83%</td>
<td></td>
</tr>
<tr>
<td>XLM</td>
<td>61%</td>
<td>59%</td>
<td>52%</td>
<td>88%</td>
<td>68%</td>
<td>33%</td>
<td>77%</td>
<td>78%</td>
<td>83%</td>
<td>36%</td>
<td>13%</td>
<td>19%</td>
<td>82%</td>
<td>3%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRD</td>
<td>65%</td>
<td>77%</td>
<td>76%</td>
<td>69%</td>
<td>53%</td>
<td>78%</td>
<td>71%</td>
<td>80%</td>
<td>100</td>
<td>92%</td>
<td>92%</td>
<td>80%</td>
<td>78%</td>
<td>9%</td>
<td>9%</td>
<td>9%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

⇒ Suggests can model using a common cycle, i.e. a single dynamic factor
Deriving the Crypto Factor

**Data:** Daily prices for tokens created at the latest by 2018 (excluding stablecoins).

⇒ Seven assets, accounting for 75% of total market capitalization.

**Methodology:**

1. Write the panel of crypto prices \( p_{it} \) as a linear combination of an AR\((q)\) common factor \( f_t \) plus an asset-specific idiosyncratic disturbance \( \epsilon_{it} \):

\[
p_{it} = \lambda_i(L) f_t + \epsilon_{it}
\]

\[
f_t = A_1 f_{t-1} + \ldots + A_q f_{t-q} + \eta_t
\]

\[
\epsilon_{it} = \rho_i \epsilon_{it-1} + \epsilon_{it}
\]

\[
\eta_t \sim \mathcal{N}(0, \Sigma)
\]

\[
e_{it} \sim \mathcal{N}(0, \sigma_{it}^2)
\]

where \( L \) is lag operator and \( \lambda_i(L) \) is \( q \)-order vector of factor loadings for asset \( i \).

2. Estimate the system using EM-MLE, and select \( q \) using information criteria.
Deriving the Crypto Factor

**Data:** Daily prices for tokens created at the latest by 2018 (excluding stablecoins).

⇒ Seven assets, accounting for 75% of total market capitalization.

**Methodology:**

1. Write the panel of crypto prices $p_{it}$ as a linear combination of an AR($q$) common factor $f_t$ plus an asset-specific idiosyncratic disturbance $\epsilon_{it}$:

$$p_{it} = \lambda_i(L)f_t + \epsilon_{it}$$

$$f_t = A_1f_{t-1} + ... + A_qf_{t-q} + \eta_t$$

$$\epsilon_{it} = \rho_i\epsilon_{it-1} + e_{it}$$

where $L$ is lag operator and $\lambda_i(L)$ is $q$-order vector of factor loadings for asset $i$.

2. Estimate the system using EM-MLE, and select $q$ using information criteria.
Deriving the Crypto Factor

**Data:** Daily prices for tokens created at the latest by 2018 (excluding stablecoins).

⇒ Seven assets, accounting for 75% of total market capitalization.

**Methodology:**

1. Write the panel of crypto prices $p_{it}$ as a linear combination of an AR($q$) common factor $f_t$ plus an asset-specific idiosyncratic disturbance $\epsilon_{it}$:

   $$p_{it} = \lambda_i(L)f_t + \epsilon_{it}$$
   $$f_t = A_1f_{t-1} + \ldots + A_qf_{t-q} + \eta_t$$
   $$\epsilon_{it} = \rho_i\epsilon_{it-1} + e_{it}$$

   where $L$ is lag operator and $\lambda_i(L)$ is $q$-order vector of factor loadings for asset $i$.

2. Estimate the system using EM-MLE, and select $q$ using information criteria.
Deriving the Crypto Factor – Inputs
Deriving the Crypto Factor – Output
Deriving the Crypto Factor – Output
(Internally) Validating the Crypto Factor – Reverse regressions

So far: $p_{it} \rightarrow f_t$. Now see how well $f_t$ explains $p_{it}$: regress $p_{it} = \alpha + \beta f_t + u_{it}$. Results:

⇒ The Crypto Factor explains on average 80% of variation in the crypto prices.
⇒ Comparison: 20% for MAR’s global equity factor (though many more large equities).
(Internally) Validating the Crypto Factor – Reverse regressions

So far: $p_{it} \rightarrow f_{t}$. Now see how well $f_{t}$ explains $p_{it}$: regress $p_{it} = \alpha + \beta f_{t} + u_{it}$. Results:

$\Rightarrow$ The Crypto Factor explains on average 80% of variation in the crypto prices.

$\Rightarrow$ Comparison: 20% for MAR’s global equity factor (though many more large equities).
(Internally) Validating the Crypto Factor – Reverse regressions

So far: $p_{it} \rightarrow f_t$. Now see how well $f_t$ explains $p_{it}$: regress $p_{it} = \alpha + \beta f_t + u_{it}$. Results:

⇒ The Crypto Factor explains on average 80% of variation in the crypto prices.
⇒ Comparison: 20% for MAR’s global equity factor (though many more large equities).
(Externally) Validating the Crypto Factor – Sub-factors using more assets

Broaden the sample to include more crypto assets, even though shorter sample (most did not exist pre-2020):

<table>
<thead>
<tr>
<th>First Gen.</th>
<th>Smart Contract</th>
<th>DeFi</th>
<th>Metaverse</th>
<th>IoT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bitcoin</td>
<td>Ethereum</td>
<td>Chainlink</td>
<td>Flow</td>
<td>VeChain</td>
</tr>
<tr>
<td>Ripple</td>
<td>Binance Coin</td>
<td>Uniswap</td>
<td>ApeCoin</td>
<td>Helium</td>
</tr>
<tr>
<td>Dogecoin</td>
<td>Cardano</td>
<td>Maker</td>
<td>The Sandbox</td>
<td>IOTA</td>
</tr>
<tr>
<td></td>
<td>Solana</td>
<td>Aave</td>
<td>Decentraland</td>
<td>IoTeX</td>
</tr>
<tr>
<td></td>
<td>Polkadot</td>
<td></td>
<td>Theta Network</td>
<td>MXC</td>
</tr>
</tbody>
</table>

⇒ Estimate a model with five different (sub-)factors, where each can affect only one class.
(Externally) Validating the Crypto Factor – Sub-factors using more assets

Broaden the sample to include more crypto assets, even though shorter sample (most did not exist pre-2020):

<table>
<thead>
<tr>
<th>First Gen.</th>
<th>Smart Contract</th>
<th>DeFi</th>
<th>Metaverse</th>
<th>IoT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bitcoin</td>
<td>Ethereum</td>
<td>Chainlink</td>
<td>Flow</td>
<td>VeChain</td>
</tr>
<tr>
<td>Ripple</td>
<td>Binance Coin</td>
<td>Uniswap</td>
<td>ApeCoin</td>
<td>Helium</td>
</tr>
<tr>
<td>Dogecoin</td>
<td>Cardano</td>
<td>Maker</td>
<td>The Sandbox</td>
<td>IOTA</td>
</tr>
<tr>
<td></td>
<td>Solana</td>
<td>Aave</td>
<td>Decentraland</td>
<td>IoTeX</td>
</tr>
<tr>
<td></td>
<td>Polkadot</td>
<td></td>
<td>Theta Network</td>
<td>MXC</td>
</tr>
</tbody>
</table>

⇒ Estimate a model with five different (sub-)factors, where each can affect only one class.
(Externally) Validating the Crypto Factor – Sub-factors using more assets

⇒ Highly correlated with overall crypto cycle. (Except Meta rebrand jump.)
(Externally) Validating the Crypto Factor – Sub-factors using more assets

⇒ Highly correlated with overall crypto cycle. (Except Meta rebrand jump.)
How does the Crypto Cycle relate to the Global Financial Cycle?

- We replicate Rey’s Global Financial Cycle variable as closely as possible
  ⇒ Use all equity indices available on Eikon/Thomson Reuters for the top 50 countries by GDP

- We use the same methodology as in the previous section to compute both an ‘overall’ factor and separate tech, finance and small-cap factors
How does the Crypto Cycle relate to the Global Financial Cycle?

- We replicate Rey’s Global Financial Cycle variable as closely as possible
  ⇒ Use all equity indices available on Eikon/Thomson Reuters for the top 50 countries by GDP ▶ Examples

- We use the same methodology as in the previous section to compute both an ‘overall’ factor and separate tech, finance and small-cap factors
How does the Crypto Cycle relate to the Global Financial Cycle?

- We replicate Rey’s Global Financial Cycle variable as closely as possible
  ⇒ Use all equity indices available on Eikon/Thomson Reuters for the top 50 countries by GDP
  ➤ Examples

- We use the same methodology as in the previous section to compute both an ‘overall’ factor and separate tech, finance and small-cap factors
How does the Crypto Cycle relate to the Global Financial Cycle?

Two observations:

- Highly correlated
- Increasingly correlated since 2020
How does the Crypto Cycle relate to the Global Financial Cycle?

Two observations: #1 Highly correlated
How does the Crypto Cycle relate to the Global Financial Cycle?

Two observations: #1 Highly correlated

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Crypto factor</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Global equity factor (general)</td>
<td>0.836***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(47.13)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Global tech factor</td>
<td></td>
<td>0.713***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(33.23)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Global financial factor</td>
<td></td>
<td></td>
<td>0.566***</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(31.42)</td>
<td></td>
</tr>
<tr>
<td>Global small-cap factor</td>
<td></td>
<td></td>
<td></td>
<td>0.878***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(50.86)</td>
</tr>
<tr>
<td>Constant</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Observations</td>
<td>1107</td>
<td>1107</td>
<td>1107</td>
<td>1107</td>
</tr>
<tr>
<td>$R^2$</td>
<td>0.680</td>
<td>0.498</td>
<td>0.313</td>
<td>0.759</td>
</tr>
</tbody>
</table>

⇒ Roughly two thirds of variation in crypto factor explained by equity factor
⇒ Driven by correlation with tech and small-cap components (not finance)
How does the Crypto Cycle relate to the Global Financial Cycle?

Two observations: #1 Highly correlated

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Crypto factor</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Global equity factor (general)</td>
<td>0.836***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(47.13)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Global tech factor</td>
<td></td>
<td>0.713***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(33.23)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Global financial factor</td>
<td></td>
<td></td>
<td>0.566***</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(31.42)</td>
<td></td>
</tr>
<tr>
<td>Global small-cap factor</td>
<td></td>
<td></td>
<td></td>
<td>0.878***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(50.86)</td>
</tr>
<tr>
<td>Constant</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Observations</td>
<td>1107</td>
<td>1107</td>
<td>1107</td>
<td>1107</td>
</tr>
<tr>
<td>$R^2$</td>
<td>0.680</td>
<td>0.498</td>
<td>0.313</td>
<td>0.759</td>
</tr>
</tbody>
</table>

⇒ Roughly two thirds of variation in crypto factor explained by equity factor
How does the Crypto Cycle relate to the Global Financial Cycle?

Two observations: #1 Highly correlated

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Crypto factor</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.836***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(47.13)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Global equity factor (general)</strong></td>
<td>0.713***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(33.23)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Global financial factor</strong></td>
<td>0.566***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(31.42)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Global small-cap factor</strong></td>
<td></td>
<td></td>
<td></td>
<td>0.878***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(50.86)</td>
</tr>
<tr>
<td><strong>Constant</strong></td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td><strong>Observations</strong></td>
<td>1107</td>
<td>1107</td>
<td>1107</td>
<td>1107</td>
</tr>
<tr>
<td>$R^2$</td>
<td>0.680</td>
<td>0.498</td>
<td>0.313</td>
<td>0.759</td>
</tr>
</tbody>
</table>

⇒ Roughly two thirds of variation in crypto factor explained by equity factor
⇒ Driven by correlation with tech and small-cap components (not finance)
How does the Crypto Cycle relate to the Global Financial Cycle?

Two observations: #1 Highly correlated, #2 Increasingly correlated since 2020.
How does the Crypto Cycle relate to the Global Financial Cycle?

Two observations: 
#1 Highly correlated, 
#2 Increasingly correlated since 2020.

⇒ Bitcoin-S&P500 correlation has increased... (Adrian, Iyer & Qureshi 2022)
How does the Crypto Cycle relate to the Global Financial Cycle?

Two observations: 
#1 Highly correlated, 
#2 Increasingly correlated since 2020.

...and so has broader crypto-equity factor correlation.
How does the Crypto Cycle relate to the Global Financial Cycle?

Two observations: 
#1 Highly correlated, 
#2 Increasingly correlated since 2020.

Crypto looks more like small-cap stocks...
How does the Crypto Cycle relate to the Global Financial Cycle?

Two observations: #1 Highly correlated, #2 Increasingly correlated since 2020.

...and more like tech...
How does the Crypto Cycle relate to the Global Financial Cycle?

Two observations: #1 Highly correlated, #2 Increasingly correlated since 2020.

...and less like financial firms.
What drove the increased correlation between crypto and equities?

Various possible (and mutually compatible) explanations:

- **New on-ramps opened to investors** (PayPal & Robinhood offering crypto, Coinbase IPO April 2021, etc.)

- **Retail**
  ⇒ COVID lockdowns increased retail trading (Vanda Research 2021, Charles Schwab 2022)
  ⇒ $15bn of federal stimulus checks invested in crypto (Toczynski 2022)

- **Institutional**
  ⇒ Increased participation by hedge funds, asset managers, and some banks (Auer et al. 2022)
  ⇒ ...
What drove the increased correlation between crypto and equities?

Various possible (and mutually compatible) explanations:

- New on-ramps opened to investors (PayPal & Robinhood offering crypto, Coinbase IPO April 2021, etc.)

- Retail
  - COVID lockdowns increased retail trading (Vanda Research 2021, Charles Schwab 2022)
  - $15bn of federal stimulus checks invested in crypto (Toczynski 2022)

- Institutional
  - Increased participation by hedge funds, asset managers, and some banks (Auer et al. 2022)
What drove the increased correlation between crypto and equities?

Various possible (and mutually compatible) explanations:

- **New on-ramps opened to investors** (PayPal & Robinhood offering crypto, Coinbase IPO April 2021, etc.)

- **Retail**
  - COVID lockdowns increased retail trading (Vanda Research 2021, Charles Schwab 2022)
  - $15bn of federal stimulus checks invested in crypto (Toczynski 2022)

- **Institutional**
  - Increased participation by hedge funds, asset managers, and some banks (Auer et al. 2022)
  - ...
What drove the increased correlation between crypto and equities?

Various possible (and mutually compatible) explanations:

• New on-ramps opened to investors (PayPal & Robinhood offering crypto, Coinbase IPO April 2021, etc.)

• Retail
  ⇒ COVID lockdowns increased retail trading (Vanda Research 2021, Charles Schwab 2022)
  ⇒ $15bn of federal stimulus checks invested in crypto (Toczyński 2022)

• Institutional
  ⇒ Increased participation by hedge funds, asset managers, and some banks (Auer et al. 2022)
  ⇒ ...
What drove the increased correlation between crypto and equities?

Various possible (and mutually compatible) explanations:

- **New on-ramps opened to investors** (PayPal & Robinhood offering crypto, Coinbase IPO April 2021, etc.)

- **Retail**
  - COVID lockdowns increased retail trading (Vanda Research 2021, Charles Schwab 2022)
  - $15bn of federal stimulus checks invested in crypto (Toczynski 2022)

- **Institutional**
  - Increased participation by hedge funds, asset managers, and some banks (Auer et al. 2022)
  - ...
What drove the increased correlation between crypto and equities?

→ Given size, focus on institutional entry = changing profile of marginal investor.
What drove the increased correlation between crypto and equities?

$⇒$ Given size, focus on institutional entry = changing profile of marginal investor.
What drove the increased correlation between crypto and equities?

To test for changing profile of the marginal investor, follow Bekaert et al. (2013) and MAR by decomposing movements in the factors into two elements:

1. Changes in market risk
2. Changes in market attitudes towards risk \( \Rightarrow \) ‘aggregate effective risk aversion’

\[ f_t^{Equities} = \alpha + \beta_1 \cdot Var(MSCI \text{ World}_t) + \epsilon_t \] (1)

and similarly for crypto:

\[ f_t^{Crypto} = \alpha' + \beta'_1 \cdot Var(MSCI \text{ World}_t) + \beta'_2 \cdot Var(BTC_t) + \epsilon'_t \] (2)

repeating MSCI in second regression to control for overall global market risk.
What drove the increased correlation between crypto and equities?

To test for changing profile of the marginal investor, follow Bekaert et al. (2013) and MAR by decomposing movements in the factors into two elements:

1. Changes in market risk
2. Changes in market attitudes towards risk ⇒ ‘aggregate effective risk aversion’
   = the wealth-weighted average risk aversion of investors

Proxying the former with realized market risk, estimate the latter as a residual $\epsilon$ from regression in logs:

$$f_t^{Equities} = \alpha + \beta_1 \cdot Var(\text{MSCI World}_t) + \epsilon_t$$  \hspace{1cm} (1)

and similarly for crypto:

$$f_t^{Crypto} = \alpha' + \beta'_1 \cdot Var(\text{MSCI World}_t) + \beta'_2 \cdot Var(\text{BTC}_t) + \epsilon'_t$$  \hspace{1cm} (2)

repeating MSCI in second regression to control for overall global market risk.
What drove the increased correlation between crypto and equities?

To test for changing profile of the marginal investor, follow Bekaert et al. (2013) and MAR by decomposing movements in the factors into two elements:

1. Changes in market risk
2. Changes in market attitudes towards risk \( \Rightarrow \) ‘aggregate effective risk aversion’
   \[ \text{= the wealth-weighted average risk aversion of investors} \]

Proxying the former with realized market risk, estimate the latter as a residual \( \epsilon \) from regression in logs:

\[
 f_t^{Equities} = \alpha + \beta_1 \cdot Var(MSCI\ World_t) + \epsilon_t \tag{1}
\]

and similarly for crypto:

\[
 f_t^{Crypto} = \alpha' + \beta'_1 \cdot Var(MSCI\ World_t) + \beta'_2 \cdot Var(BTC_t) + \epsilon'_t \tag{2}
\]

repeating MSCI in second regression to control for overall global market risk.
What drove the increased correlation between crypto and equities?

To test for changing profile of the marginal investor, follow Bekaert et al. (2013) and MAR by decomposing movements in the factors into two elements:

1. Changes in market risk
2. Changes in market attitudes towards risk ⇒ ‘aggregate effective risk aversion’
   \[ \text{aggregate effective risk aversion} = \text{the wealth-weighted average risk aversion of investors} \]

Proxying the former with realized market risk, estimate the latter as a residual \( \epsilon \) from regression in logs:

\[
 f_t^{Equities} = \alpha + \beta_1 \cdot Var(MSCI \text{ World}_t) + \epsilon_t \tag{1}
\]

and similarly for crypto:

\[
 f_t^{Crypto} = \alpha' + \beta'_1 \cdot Var(MSCI \text{ World}_t) + \beta'_2 \cdot Var(BTC_t) + \epsilon'_t \tag{2}
\]

repeating MSCI in second regression to control for overall global market risk.
What drove the increased correlation between crypto and equities?

To test for changing profile of the marginal investor, follow Bekaert et al. (2013) and MAR by decomposing movements in the factors into two elements:

1. Changes in market risk
2. Changes in market attitudes towards risk \( \Rightarrow \) ‘aggregate effective risk aversion’
   \[ \text{= the wealth-weighted average risk aversion of investors} \]

Proxying the former with realized market risk, estimate the latter as a residual \( \epsilon \) from regression in logs:

\[
 f_t^{Equities} = \alpha + \beta_1 \cdot Var(MSCI \text{ World}_t) + \epsilon_t \tag{1}
\]

and similarly for crypto:

\[
 f_t^{Crypto} = \alpha' + \beta_1' \cdot Var(MSCI \text{ World}_t) + \beta_2' \cdot Var(BTC_t) + \epsilon'_t \tag{2}
\]

repeating MSCI in second regression to control for overall global market risk.
What drove the increased correlation between crypto and equities?

Graphing the residuals: aggregate effective risk aversion in crypto markets falls since 2020, while correlation with that in equity markets rises.

⇒ marginal investor in crypto appears increasingly similar to that in equities, consistent with institutional entry driving synchronization of cycles.
What drove the increased correlation between crypto and equities?

Graphing the residuals: aggregate effective risk aversion in crypto markets falls since 2020 while correlation with that in equity markets rises.

⇒ marginal investor in crypto appears increasingly similar to that in equities, consistent with institutional entry driving synchronization of cycles.
What drove the increased correlation between crypto and equities?

Graphing the residuals: aggregate effective risk aversion in crypto markets falls since 2020, while correlation with that in equity markets rises

⇒ marginal investor in crypto appears increasingly similar to that in equities, consistent with institutional entry driving synchronization of cycles.
What drove the increased correlation between crypto and equities?

Graphing the residuals: aggregate effective risk aversion in crypto markets falls since 2020, while correlation with that in equity markets rises

⇒ marginal investor in crypto appears increasingly similar to that in equities, consistent with institutional entry driving synchronization of cycles.
What drove the increased correlation between crypto and equities?

Indeed, the correlation between the two aggregate effective risk aversions explains a large share of the correlation between the crypto and equity factors, particularly over longer horizons.

<table>
<thead>
<tr>
<th>Rolling Window (Days)</th>
<th>Corr(Crypto Factor, Equity Factor)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(45)</td>
</tr>
<tr>
<td>Corr(Crypto RA, Equity RA)</td>
<td>0.638***</td>
</tr>
<tr>
<td></td>
<td>(0.023)</td>
</tr>
<tr>
<td>Constant</td>
<td>Y</td>
</tr>
<tr>
<td>Observations</td>
<td>973</td>
</tr>
<tr>
<td>$F$-Statistic</td>
<td>762.3***</td>
</tr>
<tr>
<td>$R^2$</td>
<td>0.44</td>
</tr>
</tbody>
</table>
Does US monetary policy affect the Crypto Cycle?

- *So far:* Crypto Cycle closely related to the Global Financial Cycle...
  
  ...driven in part by entry of ‘TradFi’ institutions.

- *Literature:* US MP affects the Global Financial Cycle...
  
  ...including through impact on risk-taking behavior of financial institutions.

⇒ Likely that US MP also influences Crypto Cycle

⇒ Daily VAR to investigate, following MAR.
Does US monetary policy affect the Crypto Cycle?

- **So far:** Crypto Cycle closely related to the Global Financial Cycle...
  
  ...driven in part by entry of ‘TradFi’ institutions.

- **Literature:** US MP affects the Global Financial Cycle...
  
  ...including through impact on risk-taking behavior of financial institutions.

⇒ Likely that US MP also influences Crypto Cycle

⇒ Daily VAR to investigate, following MAR.
Does US monetary policy affect the Crypto Cycle?

- **So far:** Crypto Cycle closely related to the Global Financial Cycle...
  
  ...driven in part by entry of ‘TradFi’ institutions.

- **Literature:** US MP affects the Global Financial Cycle...
  
  ...including through impact on risk-taking behavior of financial institutions.

⇒ Likely that US MP also influences Crypto Cycle

⇒ Daily VAR to investigate, following MAR.
Does US monetary policy affect the Crypto Cycle?

Data:

- Shadow Federal Funds Rate from Wu and Xia (2016) – since balance sheet policy important during our sample period
- T10Y2Y spread – reflecting expectations of future growth
- DXY dollar index, oil and gold prices – as proxies for international trade, credit and commodity cycles
- VIX – reflecting expected future uncertainty
- Standardized daily equity and crypto factors from January 2018 to March 2022

Methodology:

- ID based on variable ordering (Cholesky decomposition)
- Exogeneity of SFFR: Fed doesn’t respond to crypto markets, nor on daily frequency. (Also robust to re-ordering so SFFR most endogenous.)
Does US monetary policy affect the Crypto Cycle?

Data:

- Shadow Federal Funds Rate from Wu and Xia (2016) – since balance sheet policy important during our sample period
- T10Y2Y spread – reflecting expectations of future growth
- DXY dollar index, oil and gold prices – as proxies for international trade, credit and commodity cycles
- VIX – reflecting expected future uncertainty
- Standardized daily equity and crypto factors from January 2018 to March 2022

Methodology:

- ID based on variable ordering (Cholesky decomposition)
- Exogeneity of SFFR: Fed doesn’t respond to crypto markets, nor on daily frequency. (Also robust to re-ordering so SFFR most endogenous.)
Does US monetary policy affect the Crypto Cycle? – *Results*

Cumulative 15-day IRFs for 1pp rise in Shadow FFR. 90% confidence intervals from 1000 Monte Carlo simulations.

⇒ Global equities fall in response to Fed tightening and higher expected uncertainty, as in MAR.
⇒ Crypto prices fall by substantially more (≈5x) and the decline is persistent.
Cumulative 15-day IRFs for 1pp rise in Shadow FFR. 90% confidence intervals from 1000 Monte Carlo simulations.

⇒ Global equities fall in response to Fed tightening and higher expected uncertainty, as in MAR.
⇒ Crypto prices fall by substantially more (≈5x) and the decline is persistent.
Does US monetary policy affect the Crypto Cycle? – Robustness

Cumulative 15-day IRFs for 1pp rise in Shadow FFR. 90% confidence intervals from 1000 Monte Carlo simulations.

⇒ Results robust to replacing the factors with S&P and the Bitcoin price.
Does US monetary policy affect the Crypto Cycle? –  **Heterogeneity**

Cumulative 15-day IRFs for 1pp rise in Shadow FFR. 90% confidence intervals from 1000 Monte Carlo simulations.

⇒ The various crypto sub-factors respond similarly
Does US monetary policy affect the Crypto Cycle? – *Heterogeneity*

Cumulative 15-day IRFs for 1pp rise in Shadow FFR. 90% confidence intervals from 1000 Monte Carlo simulations.

⇒ The various crypto sub-factors respond similarly
⇒ IoT & Metaverse least affected. More recent? ‘*Time to build*’? Short sample.
Does US monetary policy affect the Crypto Cycle? – *Channels*

Add aggregate effective risk aversion measures to VAR (before respective factors):

Higher cost of capital:

⇒ deleveraging – especially by least risk-averse institutions, which initially take on more leverage (in line with e.g. Coimbra et al. 2022)
⇒ higher aggregate effective risk aversion + lower crypto prices.
Does US monetary policy affect the Crypto Cycle? — *Channels*

Add aggregate effective risk aversion measures to VAR (before respective factors):

Higher cost of capital:

⇒ *deleveraging* — especially by least risk-averse institutions, which initially take on more leverage (in line with e.g. Coimbra et al. 2022)

⇒ higher aggregate effective risk aversion + lower crypto prices.
Does US monetary policy affect the Crypto Cycle? – *Channels*

Add aggregate effective risk aversion measures to VAR (before respective factors):

Higher cost of capital:

⇒ **deleveraging** – especially by least risk-averse institutions, which initially take on more leverage (in line with e.g. Coimbra et al. 2022)

⇒ higher aggregate effective risk aversion + lower crypto prices.
Does US monetary policy affect the Crypto Cycle? – *Channels*

Stronger post-2020, consistent with increased presence of (more leveraged) institutions:

⇒ consistent with institutional participation not only increasing correlation with equities, but also reinforcing transmission of MP to crypto markets.
Does US monetary policy affect the Crypto Cycle? – *Channels*

Stronger post-2020, consistent with increased presence of (more leveraged) institutions:

⇒ consistent with institutional participation not only increasing correlation with equities, but also reinforcing transmission of MP to crypto markets.
Does US monetary policy affect the Crypto Cycle? – Channels

Other potential channels:

1. USD appreciation in response to tightening makes stablecoin leverage more expensive for non-US investors (as 95% SC market cap USD-denominated)
   ⇒ Test: see if response of crypto factor to DXY; no significant impact.

2./3. More liquid/volatile assets simply react more to MP
   ⇒ Test: see if different responses between the most and least liquid/volatile crypto assets; no significant differences.
Does US monetary policy affect the Crypto Cycle? – *Channels*

Other potential channels:

1. USD appreciation in response to tightening makes stablecoin leverage more expensive for non-US investors (as 95% SC market cap USD-denominated)
   ⇒ Test: see if response of crypto factor to DXY; no significant impact.

2./3. More liquid/volatile assets simply react more to MP
   ⇒ Test: see if different responses between the most and least liquid/volatile crypto assets; no significant differences.
Does US monetary policy affect the Crypto Cycle? – *Channels*

Other potential channels:

1. USD appreciation in response to tightening makes stablecoin leverage more expensive for non-US investors (as 95% SC market cap USD-denominated)
   ⇒ Test: see if response of crypto factor to DXY; no significant impact.

2./3. More liquid/volatile assets simply react more to MP
   ⇒ Test: see if different responses between the most and least liquid/volatile crypto assets; no significant differences.
Taking stock

Stylized facts:

0. A single crypto factor explains a large share of overall price variation.

1. The crypto factor and global equity factor are increasingly correlated, coinciding with increased entry of institutional investors into crypto markets.

2. A US monetary policy contraction reduces the crypto factor, by substantially more than the equity factor, and by more since the entry of institutional investors into crypto markets.

⇒ Construct a simple framework to reflect these elements

...building on the literature on heterogeneous risk-taking intermediaries

E.g., Zigrand & Danielsson 2021, Adrian & Shin 2014, MAR 2021
Taking stock

Stylized facts:

0. A single crypto factor explains a large share of overall price variation.

1. The crypto factor and global equity factor are increasingly correlated, coinciding with increased entry of institutional investors into crypto markets.

2. A US monetary policy contraction reduces the crypto factor, by substantially more than the equity factor, and by more since the entry of institutional investors into crypto markets.

⇒ Construct a simple framework to reflect these elements

...building on the literature on heterogeneous risk-taking intermediaries

E.g., Zigrand & Danielsson 2021, Adrian & Shin 2014, MAR 2021
Setup

- Two risk-averse agents that each maximise a mean-variance portfolio:
  - Crypto investors that invest only in crypto assets
  - Institutional investors that invest in both crypto and global equities

- Both can finance themselves at the (US) risk-free rate to leverage up their positions.

- The risk aversion of institutional investors is lower than that of crypto investors
  - Greater scale = risk pooling, or explicit/implicit deposit guarantees as in MAR.
Setup

- Two risk-averse agents that each maximise a mean-variance portfolio:
  - Crypto investors that invest only in crypto assets
  - Institutional investors that invest in both crypto and global equities

- Both can finance themselves at the (US) risk-free rate to leverage up their positions.

- The risk aversion of institutional investors is lower than that of crypto investors
  - Greater scale = risk pooling, or explicit/implicit deposit guarantees as in MAR.
Setup

- Two risk-averse agents that each maximise a mean-variance portfolio:
  - Crypto investors that invest only in crypto assets
  - Institutional investors that invest in both crypto and global equities
- Both can finance themselves at the (US) risk-free rate to leverage up their positions.
- The risk aversion of institutional investors is lower than that of crypto investors
  - Greater scale = risk pooling, or explicit/implicit deposit guarantees as in MAR.
Crypto investors

...invest share $x_t^c$ of their wealth in crypto to maximise

$$\max_{x_t^c} E_t(x_t^c R_{t+1}^c) - \frac{\sigma}{2} Var_t(x_t^c R_{t+1}^c)$$

where $R_{t+1}^c$ is the excess return on crypto and $\sigma$ is the (constant) risk-aversion of the investor, giving FOC

$$x_t^c = \frac{1}{\sigma} [Var_t(x_t^c R_{t+1}^c)]^{-1} E_t(x_t^c R_{t+1}^c)$$

I.e. $c$ increases their holdings proportionately with the expected return on crypto assets, and decreases them with the variance of the portfolio and their risk aversion.
Crypto investors

...invest share $x_t^c$ of their wealth in crypto to maximise

$$\max_{x_t^c} E_t(x_t^c R_{t+1}^c) - \frac{\sigma}{2} Var_t(x_t^c R_{t+1}^c)$$

where $R_{t+1}^c$ is the excess return on crypto and $\sigma$ is the (constant) risk-aversion of the investor, giving FOC

$$x_t^c = \frac{1}{\sigma}[Var_t(x_t^c R_{t+1}^c)]^{-1} E_t(x_t^c R_{t+1}^c)$$

I.e. $c$ increases their holdings proportionately with the expected return on crypto assets, and decreases them with the variance of the portfolio and their risk aversion.
Institutional investors

...invest share $x^i_t (y_t)$ of their wealth in crypto (equities) to maximise

$$\max_{x^i_t, y_t} E_t(x^i_t R^{c}_{t+1} + y_t R^{e}_{t+1}) - \frac{\theta}{2} Var_t(x^i_t R^{c}_{t+1} + y_t R^{e}_{t+1})$$

where $R^{e}_{t+1}$ is the excess return on global equities and $\theta$ is the (constant) risk-aversion of the investor (where $\theta < \sigma$), giving FOC

$$x^i_t = \frac{1}{\theta} [Var_t(x^i_t R^{c}_{t+1})]^{-1} E_t[x^i_t R^{c}_{t+1} - \theta Cov_t(R^{c}_{t+1}, R^{e}_{t+1})y_t]$$

I.e. $i$ increases their holdings of crypto proportionately with the expected return on crypto assets, and decreases them with the variance of crypto returns, their risk aversion, and the correlation of crypto with equities.
Institutional investors

...invest share \( x^i_t \) \((y_t)\) of their wealth in crypto (equities) to maximise

\[
\max_{x^i_t, y_t} E_t(x^i_t R^c_{t+1} + y_t R^e_{t+1}) - \frac{\theta}{2} Var_t(x^i_t R^c_{t+1} + y_t R^e_{t+1})
\]

where \( R^e_{t+1} \) is the excess return on global equities and \( \theta \) is the (constant) risk-aversion of the investor (where \( \theta < \sigma \)), giving FOC

\[
x^i_t = \frac{1}{\theta} [Var_t(x^i_t R^c_{t+1})]^{-1} E_t[x^i_t R^c_{t+1} - \theta Cov_t(R^c_{t+1}, R^e_{t+1})y_t]
\]

I.e. \( i \) increases their holdings of crypto proportionately with the expected return on crypto assets, and decreases them with the variance of crypto returns, their risk aversion, and the correlation of crypto with equities.
Equilibrium in the crypto market

...requires that supply of crypto assets (normalized by total wealth) \( s_t \) equals total holdings

\[
s_t = x_t^c \frac{w_t^c}{w_t^c + w_t^i} + x_t^i \frac{w_t^i}{w_t^c + w_t^i}
\]

where \( w_t^c \) and \( w_t^i \) are the wealth of investors. By combining this with the FOCs, we can summarize the expected return on crypto:

\[
E_t(R_{t+1}^c) = \Gamma_t Var_t(R_{t+1}^c) s_t + \Gamma_t Cov_t(R_{t+1}^c, R_{t+1}^e) y_t
\]

where

\[
\Gamma_t = (w_t^c + w_t^i) \left[ \frac{w_t^c}{\sigma} + \frac{w_t^i}{\theta} \right]^{-1}
\]

is the aggregate degree of effective risk aversion.
Equilibrium in the crypto market

...requires that supply of crypto assets (normalized by total wealth) $s_t$ equals total holdings

$$s_t = x_t^c \frac{w_t^c}{w_t^c + w_t^i} + x_t^i \frac{w_t^i}{w_t^c + w_t^i}$$

where $w_t^c$ and $w_t^i$ are the wealth of investors. By combining this with the FOCs, we can summarize the expected return on crypto:

$$E_t(R_{t+1}^c) = \Gamma_t Var_t(R_{t+1}^c) s_t + \Gamma_t Cov_t(R_{t+1}^c, R_{t+1}^e) y_t$$

where

$$\Gamma_t = (w_t^c + w_t^i) \left[ \frac{w_t^c}{\sigma} + \frac{w_t^i}{\theta} \right]^{-1}$$

is the aggregate degree of effective risk aversion.
...requires that supply of equities (normalized by wealth) $y_{t}^{tot}$ equals total holdings $y_{t}$.

Combining this with the FOC then gives expected return on equities:

$$E_{t}(R_{t+1}^{e}) = \theta \text{var}_{t}(R_{t+1}^{e})y_{t}^{tot} + \theta \text{cov}_{t}(R_{t+1}^{c}, R_{t+1}^{e})x_{t}^{i}$$
Equilibrium in the equity market

...requires that supply of equities (normalized by wealth) $y_{tot}^t$ equals total holdings $y_t$.

Combining this with the FOC then gives expected return on equities:

$$E_t(R_{t+1}^e) = \theta Var_t(R_{t+1}^e)y_{tot}^t + \theta Cov_t(R_{t+1}^c, R_{t+1}^e)x_t^i$$
Results

**Equities:**

\[ E_t(R_{t+1}^e) = \theta \text{Var}_t(R_{t+1}^e) y_{tot}^t + \theta \text{Cov}_t(R_{t+1}^c, R_{t+1}^e) x_t^i \]

**Crypto:**

\[ E_t(R_{t+1}^c) = \Gamma_t \text{Var}_t(R_{t+1}^c) s_t + \Gamma_t \text{Cov}_t(R_{t+1}^c, R_{t+1}^e) y_{tot}^t \]

**Aggregate Risk Aversion:**

\[ \Gamma_t = (w_t^c + w_t^i) \left[ \frac{w_t^c}{\sigma} + \frac{w_t^i}{\theta} \right]^{-1} \]

1. As institutional wealth \( w_t^i \) makes up an increasing share of crypto market, time-varying risk-taking profile of crypto converges on that of equities.

\[ \Gamma_t \rightarrow \theta ... \]

\[ ... \text{so crypto and equity returns only differ based on relative supplies and relative variances of the two assets.} \]
Results

Equities:

\[ E_t(R_{t+1}^e) = \theta \text{Var}_t(R_{t+1}^e)y_{tot}^{t} + \theta \text{Cov}_t(R_{t+1}^c, R_{t+1}^e)x_t^i \]

Crypto:

\[ E_t(R_{t+1}^c) = \Gamma_t \text{Var}_t(R_{t+1}^c)s_t + \Gamma_t \text{Cov}_t(R_{t+1}^c, R_{t+1}^e)y_{tot}^{t} \]

Aggregate Risk Aversion:

\[ \Gamma_t = (w_t^c + w_t^i)\left[\frac{w_t^c}{\sigma} + \frac{w_t^i}{\theta}\right]^{-1} \]

1. As institutional wealth \( w_t^i \) makes up an increasing share of crypto market, time-varying risk-taking profile of crypto converges on that of equities.

\[ \Rightarrow \text{In the limit of full institutional entry, } \Gamma_t \rightarrow \theta... \]

\[ \Rightarrow \text{...so crypto and equity returns only differ based on relative supplies and relative variances of the two assets.} \]
**Results**

**Equities:**

\[ E_t(R_{t+1}^e) = \theta Var_t(R_{t+1}^e)y_{tot}^t + \theta Cov_t(R_{t+1}^c, R_{t+1}^e)x_t^i \]

**Crypto:**

\[ E_t(R_{t+1}^c) = \Gamma_t Var_t(R_{t+1}^c)s_t + \Gamma_t Cov_t(R_{t+1}^c, R_{t+1}^e)y_{tot}^t \]

**Aggregate Risk Aversion:**

\[ \Gamma_t = (w_t^c + w_t^i) \left[ \frac{w_t^c}{\sigma} + \frac{w_t^i}{\theta} \right]^{-1} \]

1. As institutional wealth \( w_t^i \) makes up an increasing share of crypto market, time-varying risk-taking profile of crypto converges on that of equities.

\[ \Rightarrow \text{In the limit of full institutional entry, } \Gamma_t \rightarrow \theta \ldots \]

\[ \Rightarrow \ldots \text{so crypto and equity returns only differ based on relative supplies and relative variances of the two assets.} \]
Results

Equities: \[ E_t(R_{t+1}^e) = \theta \text{Var}_t(R_{t+1}^e)y_{tot}^t + \theta \text{Cov}_t(R_{t+1}^c, R_{t+1}^e)x_i^t \]

Crypto: \[ E_t(R_{t+1}^c) = \Gamma_t \text{Var}_t(R_{t+1}^c)s_t + \Gamma_t \text{Cov}_t(R_{t+1}^c, R_{t+1}^e)y_{tot}^t \]

Aggregate Risk Aversion: \[ \Gamma_t = (w_t^c + w_t^i)\left[\frac{w_t^c}{\sigma} + \frac{w_t^i}{\theta}\right]^{-1} \]

1. As institutional wealth \( w_t^i \) makes up an increasing share of crypto market, time-varying risk-taking profile of crypto converges on that of equities.
   \[ \Rightarrow \text{In the limit of full institutional entry, } \Gamma_t \to \theta \ldots \]
   \[ \Rightarrow \text{...so crypto and equity returns only differ based on relative supplies and relative variances of the two assets.} \]
Results

Equities: \[ E_t(R_{t+1}^e) = \theta Var_t(R_{t+1}^e)y_t^{tot} + \theta Cov_t(R_{t+1}^c, R_{t+1}^e)x_t^i \]

Crypto: \[ E_t(R_{t+1}^c) = \Gamma_t Var_t(R_{t+1}^c)s_t + \Gamma_t Cov_t(R_{t+1}^c, R_{t+1}^e)y_t^{tot} \]

Aggregate Risk Aversion: \[ \Gamma_t = (w_t^c + w_t^i)\left[\frac{w_t^c}{\sigma} + \frac{w_t^i}{\theta}\right]^{-1} \]

2. MP tightening reduces crypto returns by more, the larger the share of institutions.

⇒ Increased institutional entry \( w_t^i > 0 \) reduces AERA (since \( \theta < \Gamma_t < \sigma \)), i.e. marginal crypto investor becomes less risk averse.

⇒ If less risk-averse + more levered agents react more to MP tightening (e.g. Coimbra et al. 2022), then impact accentuated. (Extension: het. leverage.)
Results

Equities: \[ E_t(R_{t+1}^e) = \theta Var_t(R_{t+1}^e)y_{t}^{tot} + \theta Cov_t(R_{t+1}^c, R_{t+1}^e)x_{t}^i \]

Crypto: \[ E_t(R_{t+1}^c) = \Gamma_t Var_t(R_{t+1}^c)s_t + \Gamma_t Cov_t(R_{t+1}^c, R_{t+1}^e)y_{t}^{tot} \]

Aggregate Risk Aversion: \[ \Gamma_t = (w_{c_t} + w_{i_t})\left[\frac{w_{c_t}}{\sigma} + \frac{w_{i_t}}{\theta}\right]^{-1} \]

2. MP tightening reduces crypto returns by more, the larger the share of institutions.

\[ \Rightarrow \text{Increased institutional entry } w_{i_t} > 0 \text{ reduces AERA (since } \theta < \Gamma_t < \sigma), \text{ i.e. marginal crypto investor becomes less risk averse.} \]

\[ \Rightarrow \text{If less risk-averse + more levered agents react more to MP tightening (e.g. Coimbra et al. 2022), then impact accentuated. (Extension: het. leverage.)} \]
Results

Equities: \[ E_t(R^e_{t+1}) = \theta \text{Var}_t(R^e_{t+1})y^\text{tot}_t + \theta \text{Cov}_t(R^c_{t+1}, R^e_{t+1})x^i_t \]

Crypto: \[ E_t(R^c_{t+1}) = \Gamma_t \text{Var}_t(R^c_{t+1})s_t + \Gamma_t \text{Cov}_t(R^c_{t+1}, R^e_{t+1})y^\text{tot}_t \]

Aggregate Risk Aversion: \[ \Gamma_t = (w^c_t + w^i_t) \left[ \frac{w^c_t}{\sigma} + \frac{w^i_t}{\theta} \right]^{-1} \]

2. MP tightening reduces crypto returns by more, the larger the share of institutions.
   \[ \Rightarrow \] Increased institutional entry \( w^i_t > 0 \) reduces AERA (since \( \theta < \Gamma_t < \sigma \)), i.e. marginal crypto investor becomes less risk averse.
   \[ \Rightarrow \] If less risk-averse + more levered agents react more to MP tightening (e.g. Coimbra et al. 2022), then impact accentuated. *(Extension: het. leverage.)*
Results

**Equities:**

\[ E_t(R_{t+1}^e) = \theta \text{Var}_t(R_{t+1}^e) y_{tot} + \theta \text{Cov}_t(R_{t+1}^c, R_{t+1}^e) x_t^i \]

**Crypto:**

\[ E_t(R_{t+1}^c) = \Gamma_t \text{Var}_t(R_{t+1}^c) s_t + \Gamma_t \text{Cov}_t(R_{t+1}^c, R_{t+1}^e) y_{tot} \]

**Aggregate Risk Aversion:**

\[ \Gamma_t = (w_t^c + w_t^i) \left[ \frac{w_t^c}{\sigma} + \frac{w_t^i}{\theta} \right]^{-1} \]

3. A future crash in crypto, which raises variance and reduces institutions’ allocations \( x_t^i \), could spill over to reduce equity returns – and by more, the larger are institutional holdings of crypto relative to equities \( y_{tot}^t \).

⇒ Second term in *Equities* currently negligible \( (x_t^i \text{ small}) \), may not be in future

⇒ Could justify cap \( x_t^i \) (Extension: esp. if add market failures/irrationality/etc.)
Results

Equities: \[ E_t(R_{t+1}^e) = \theta Var_t(R_{t+1}^e)y_{tot}^t + \theta Cov_t(R_{t+1}^c, R_{t+1}^e)x_t^i \]

Crypto: \[ E_t(R_{t+1}^c) = \Gamma Var_t(R_{t+1}^c)s_t + \Gamma Cov_t(R_{t+1}^c, R_{t+1}^e)y_{tot}^t \]

Aggregate Risk Aversion: \[ \Gamma_t = \left(w^c_t + w^i_t\right)\left[\frac{w^c_t}{\sigma} + \frac{w^i_t}{\theta}\right]^{-1} \]

3. A future crash in crypto, which raises variance and reduces institutions’ allocations \(x_t^i\), could spill over to reduce equity returns – and by more, the larger are institutional holdings of crypto relative to equities \(y_{tot}^t\).

⇒ Second term in Equities currently negligible \((x_t^i\) small), may not be in future

⇒ Could justify cap \(\bar{x}_t^i\) (Extension: esp. if add market failures/irrationality/etc.)
Results

**Equities:**

\[ E_t(R_{t+1}^e) = \theta \text{Var}_t(R_{t+1}^e)y_{t\text{tot}}^t + \theta \text{Cov}_t(R_{t+1}^c, R_{t+1}^e)x_t^i \]

**Crypto:**

\[ E_t(R_{t+1}^c) = \Gamma_t \text{Var}_t(R_{t+1}^c)s_t + \Gamma_t \text{Cov}_t(R_{t+1}^c, R_{t+1}^e)y_{t\text{tot}}^t \]

**Aggregate Risk Aversion:**

\[ \Gamma_t = (w_t^c + w_t^i) \left[ \frac{w_t^c}{\sigma} + \frac{w_t^i}{\theta} \right]^{-1} \]

3. A future crash in crypto, which raises variance and reduces institutions’ allocations \( x_t^i \), could spill over to reduce equity returns – and by more, the larger are institutional holdings of crypto relative to equities \( y_{t\text{tot}}^t \).

⇒ Second term in *Equities* currently negligible (\( x_t^i \) small), may not be in future

⇒ Could justify cap \( \bar{x}_t^i \) (Extension: esp. if add market failures/irrationality/etc.)
Results

Equities:

\[ E_t(R_{t+1}^e) = \theta Var_t(R_{t+1}^e)y_{t}^{\text{tot}} + \theta Cov_t(R_{t+1}^c, R_{t+1}^e)x_t^i \]

Crypto:

\[ E_t(R_{t+1}^c) = \Gamma_t Var_t(R_{t+1}^c)s_t + \Gamma_t Cov_t(R_{t+1}^c, R_{t+1}^e)y_{t}^{\text{tot}} \]

Aggregate Risk Aversion:

\[ \Gamma_t = (w_t^c + w_t^i) \left[ \frac{w_t^c}{\sigma} + \frac{w_t^i}{\theta} \right]^{-1} \]

3. A future crash in crypto, which raises variance and reduces institutions’ allocations \(x_t^i\), could spill over to reduce equity returns – and by more, the larger are institutional holdings of crypto relative to equities \(y_{t}^{\text{tot}}\).

\[ \Rightarrow \] Second term in Equities currently negligible \((x_t^i\) small), may not be in future

\[ \Rightarrow \] Could justify cap \(x_t^i\) (Extension: esp. if add market failures/irrationality/etc.)
Conclusion

- A single factor can explain a large share of variation in crypto prices.

- This Crypto Factor has historically been increasingly correlated with the Global Financial Cycle, and reacts even more strongly to US monetary policy than do equities.

- The changing composition of the crypto investor base – in particular the entry of institutional investors since 2020 – can explain these patterns and provide a framework for assessing future developments.
Conclusion

- A single factor can explain a large share of variation in crypto prices.

- This Crypto Factor has historically been increasingly correlated with the Global Financial Cycle, and reacts even more strongly to US monetary policy than do equities.

- The changing composition of the crypto investor base – in particular the entry of institutional investors since 2020 – can explain these patterns and provide a framework for assessing future developments.
Conclusion

- A single factor can explain a large share of variation in crypto prices.

- This Crypto Factor has historically been increasingly correlated with the Global Financial Cycle, and reacts even more strongly to US monetary policy than do equities.

- The changing composition of the crypto investor base – in particular the entry of institutional investors since 2020 – can explain these patterns and provide a framework for assessing future developments.
Initial thoughts on FTX

• ‘When the tide goes out...’
  ⇒ Tightening FCs → harder to cover up issues with new liquidity → 3AC, Celsius, Voyager, Alameda, FTX, BlockFi, Genesis/DCG (?), ...

• Could have been a lot worse
  ⇒ If later, with crypto a larger share of institutional portfolios. Instead, loss (+ embarrassment) confined to small number of private (+ public) entities.

• Looking forward: ‘once bitten, twice shy’?
  ⇒ Crypto-equity correlation fell already – FTX collapse × lower US inflation
  ⇒ Institutional involvement pausing/reversing (until next time...?)
  ⇒ Now is the time to regulate (easier to impose cap $\bar{x}_t^i$ when $x_t^i$ is low).
Initial thoughts on FTX

• ‘When the tide goes out...’
  ⇒ Tightening FCs → harder to cover up issues with new liquidity → 3AC, Celsius, Voyager, Alameda, FTX, BlockFi, Genesis/DCG (?), ...

• Could have been a lot worse
  ⇒ If later, with crypto a larger share of institutional portfolios. Instead, loss (+ embarrassment) confined to small number of private (+ public) entities.

• Looking forward: ‘once bitten, twice shy’?
  ⇒ Crypto-equity correlation fell already – FTX collapse × lower US inflation
  ⇒ Institutional involvement pausing/reversing (until next time...?)
  ⇒ Now is the time to regulate (easier to impose cap $\bar{x}_t^i$ when $x_t^i$ is low).
Initial thoughts on FTX

• ‘When the tide goes out...’
  ⇒ Tightening FCs → harder to cover up issues with new liquidity → 3AC, Celsius, Voyager, Alameda, FTX, BlockFi, Genesis/DCG (?), ...

• Could have been a lot worse
  ⇒ If later, with crypto a larger share of institutional portfolios. Instead, loss (+ embarrassment) confined to small number of private (+ public) entities.

• Looking forward: ‘once bitten, twice shy’?
  ⇒ Crypto-equity correlation fell already – FTX collapse × lower US inflation
  ⇒ Institutional involvement pausing/reversing (until next time...?)
  ⇒ Now is the time to regulate (easier to impose cap $\bar{x}_t^i$ when $x_t^i$ is low).
Thank you!
The Crypto Cycle and US Monetary Policy

Natasha Che\textsuperscript{1}, Alexander Copestake\textsuperscript{1}, Davide Furceri\textsuperscript{1}, Tammaro Terracciano\textsuperscript{2}
November 29, 2022

\textsuperscript{1}International Monetary Fund  
\textsuperscript{2}University of Geneva & Harvard University
<table>
<thead>
<tr>
<th>Country</th>
<th>Equity Indexes</th>
<th>Tech Indexes</th>
<th>Financial Indexes</th>
<th>Small Caps Indexes</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States</td>
<td>.SPX</td>
<td>.SPLRCT</td>
<td>.SPSY</td>
<td>.SPCY</td>
</tr>
<tr>
<td>China</td>
<td>.SSEC</td>
<td>.SZFI</td>
<td>.SZFI</td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td>.JPXNK400</td>
<td></td>
<td></td>
<td>.TOPXS</td>
</tr>
<tr>
<td>Germany</td>
<td>.GADXHI</td>
<td>.CXPHX</td>
<td>.CXPVX</td>
<td></td>
</tr>
<tr>
<td>India</td>
<td>.BSESBN</td>
<td>.BSETECK</td>
<td>.BSEBANK</td>
<td></td>
</tr>
<tr>
<td>UK</td>
<td>.FTSE</td>
<td>.FTTASX</td>
<td></td>
<td>.FTSC</td>
</tr>
<tr>
<td>France</td>
<td>.FCHI</td>
<td>.FRTEC</td>
<td>.FRFIN</td>
<td>.CACS</td>
</tr>
<tr>
<td>Brazil</td>
<td>.BVSP</td>
<td></td>
<td>TRXFLDBRPFIN</td>
<td>.SMLL</td>
</tr>
<tr>
<td>Italy</td>
<td>.FTMIB</td>
<td></td>
<td></td>
<td>.FTITSC</td>
</tr>
<tr>
<td>Canada</td>
<td>.GSPTSE</td>
<td>.SPTTTK</td>
<td>.SPTTFS</td>
<td>.SPTSES</td>
</tr>
<tr>
<td>Russia</td>
<td>.IRTS</td>
<td></td>
<td>.RTSFN</td>
<td></td>
</tr>
<tr>
<td>South Korea</td>
<td>.KS11</td>
<td>.KRXIT</td>
<td>.KRXBANK</td>
<td></td>
</tr>
</tbody>
</table>
Wu-Xia Shadow Federal Funds Rate

Note: The black vertical lines at December 2018 and March 2020 indicate months where the Federal Open Market Committee lowered the target range for the federal funds rate to 0 to 1/4 percent.

Sources: Board of Governors of the Federal Reserve System and Wu and Xia (2016)
Non-Cumulative SFFR

Graph: ffr_shadow2ffr_shadow

Y-axis: 0.0 to 1.0
X-axis: 0 to 14
Global Monetary Policy (Fed, ECB, BoE)

Cumulative 15-day IRFs for 1pp rise in Shadow FFR. 90% confidence intervals from 1000 Monte Carlo simulations.

When using weighted-average shadow FFRs the responses lose significance

⇒ Suggests Fed stance is dominant in crypto markets, as in traditional markets
⇒ Consistent with the dollarization of crypto markets via USD stablecoins.